
CS498: Algorithmic Engineering
Lecture 1

Chandra Chekuri & Elfarouk Harb

University of Illinois Urbana-Champaign

01/20/2026

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 1 / 53

Outline
1 Course Logistics

Differences from CS374 and CS473
Content and Types of Projects in Class
Prerequisites
Grading
LLM Usage Policy

2 History of Linear Programming

3 Linear Programming: The Basics

4 The Engineer’s Diet Dilemma

5 Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 2 / 53

1 Course Logistics
Differences from CS374 and CS473
Content and Types of Projects in Class
Prerequisites
Grading
LLM Usage Policy

2 History of Linear Programming

3 Linear Programming: The Basics

4 The Engineer’s Diet Dilemma

5 Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 3 / 53

From Proofs to Solvers

While standard algorithms courses focus on proving
what is computable,

this course focuses on implementing what is necessary.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 4 / 53

From Proofs to Solvers
While standard algorithms courses focus on proving

what is computable,
this course focuses on implementing what is necessary.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 4 / 53

Relation to CS 374

CS 374: The Vocabulary

Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.
Goal: Determine theoretical
tractability (P vs NP).
Output: A formal proof.
Example Concept:
3-SAT is NP-Complete, No
Polynomial time algorithms,
unless P = NP

CS 498: The Application
Focuses on Modelling:
Transforming Problem A to B so
a solver for B can handle it.
Goal: Practical solutions for
real-world instances.
Output: A Python script or
implementation of an Algorithm
to solve the problem.
Example Concept:
How to Solve This 3-SAT
Instance (1M vars) in < 5s

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5 / 53

Relation to CS 374

CS 374: The Vocabulary
Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.

Goal: Determine theoretical
tractability (P vs NP).
Output: A formal proof.
Example Concept:
3-SAT is NP-Complete, No
Polynomial time algorithms,
unless P = NP

CS 498: The Application
Focuses on Modelling:
Transforming Problem A to B so
a solver for B can handle it.
Goal: Practical solutions for
real-world instances.
Output: A Python script or
implementation of an Algorithm
to solve the problem.
Example Concept:
How to Solve This 3-SAT
Instance (1M vars) in < 5s

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5 / 53

Relation to CS 374

CS 374: The Vocabulary
Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.
Goal: Determine theoretical
tractability (P vs NP).

Output: A formal proof.
Example Concept:
3-SAT is NP-Complete, No
Polynomial time algorithms,
unless P = NP

CS 498: The Application
Focuses on Modelling:
Transforming Problem A to B so
a solver for B can handle it.
Goal: Practical solutions for
real-world instances.
Output: A Python script or
implementation of an Algorithm
to solve the problem.
Example Concept:
How to Solve This 3-SAT
Instance (1M vars) in < 5s

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5 / 53

Relation to CS 374

CS 374: The Vocabulary
Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.
Goal: Determine theoretical
tractability (P vs NP).
Output: A formal proof.

Example Concept:
3-SAT is NP-Complete, No
Polynomial time algorithms,
unless P = NP

CS 498: The Application
Focuses on Modelling:
Transforming Problem A to B so
a solver for B can handle it.
Goal: Practical solutions for
real-world instances.
Output: A Python script or
implementation of an Algorithm
to solve the problem.
Example Concept:
How to Solve This 3-SAT
Instance (1M vars) in < 5s

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5 / 53

Relation to CS 374

CS 374: The Vocabulary
Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.
Goal: Determine theoretical
tractability (P vs NP).
Output: A formal proof.
Example Concept:
3-SAT is NP-Complete, No
Polynomial time algorithms,
unless P = NP

CS 498: The Application
Focuses on Modelling:
Transforming Problem A to B so
a solver for B can handle it.
Goal: Practical solutions for
real-world instances.
Output: A Python script or
implementation of an Algorithm
to solve the problem.
Example Concept:
How to Solve This 3-SAT
Instance (1M vars) in < 5s

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5 / 53

Relation to CS 374

CS 374: The Vocabulary
Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.
Goal: Determine theoretical
tractability (P vs NP).
Output: A formal proof.
Example Concept:
3-SAT is NP-Complete, No
Polynomial time algorithms,
unless P = NP

CS 498: The Application
Focuses on Modelling:
Transforming Problem A to B so
a solver for B can handle it.

Goal: Practical solutions for
real-world instances.
Output: A Python script or
implementation of an Algorithm
to solve the problem.
Example Concept:
How to Solve This 3-SAT
Instance (1M vars) in < 5s

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5 / 53

Relation to CS 374

CS 374: The Vocabulary
Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.
Goal: Determine theoretical
tractability (P vs NP).
Output: A formal proof.
Example Concept:
3-SAT is NP-Complete, No
Polynomial time algorithms,
unless P = NP

CS 498: The Application
Focuses on Modelling:
Transforming Problem A to B so
a solver for B can handle it.
Goal: Practical solutions for
real-world instances.

Output: A Python script or
implementation of an Algorithm
to solve the problem.
Example Concept:
How to Solve This 3-SAT
Instance (1M vars) in < 5s

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5 / 53

Relation to CS 374

CS 374: The Vocabulary
Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.
Goal: Determine theoretical
tractability (P vs NP).
Output: A formal proof.
Example Concept:
3-SAT is NP-Complete, No
Polynomial time algorithms,
unless P = NP

CS 498: The Application
Focuses on Modelling:
Transforming Problem A to B so
a solver for B can handle it.
Goal: Practical solutions for
real-world instances.
Output: A Python script or
implementation of an Algorithm
to solve the problem.

Example Concept:
How to Solve This 3-SAT
Instance (1M vars) in < 5s

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5 / 53

Relation to CS 374

CS 374: The Vocabulary
Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.
Goal: Determine theoretical
tractability (P vs NP).
Output: A formal proof.
Example Concept:
3-SAT is NP-Complete, No
Polynomial time algorithms,
unless P = NP

CS 498: The Application
Focuses on Modelling:
Transforming Problem A to B so
a solver for B can handle it.
Goal: Practical solutions for
real-world instances.
Output: A Python script or
implementation of an Algorithm
to solve the problem.
Example Concept:
How to Solve This 3-SAT
Instance (1M vars) in < 5s

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5 / 53

Relation to CS 473
CS 473 analyzes the internal mathematics of the engine.
Advanced algorithmic techniques (example: randomization, flow,
advanced dynamic programming).
Focus on proving efficiency (run-time) and approximation gurantees
(bounds).

CS 498 teaches you how to drive the car.
We treat powerful solvers, that researchers have spent decades
working on, as black boxes to be mastered.
Focus on modeling complex constraints rather than implementing the
solver itself.
We still explain the theory behind the solvers, but the focus is on
basics of theory

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 6 / 53

Relation to CS 473
CS 473 analyzes the internal mathematics of the engine.
Advanced algorithmic techniques (example: randomization, flow,
advanced dynamic programming).
Focus on proving efficiency (run-time) and approximation gurantees
(bounds).

CS 498 teaches you how to drive the car.
We treat powerful solvers, that researchers have spent decades
working on, as black boxes to be mastered.
Focus on modeling complex constraints rather than implementing the
solver itself.
We still explain the theory behind the solvers, but the focus is on
basics of theory

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 6 / 53

The “NP-Hard” Perspective

CS 374: ”Stop”
Proving a problem is

NP-Hard is the end of the
conversation. It means an

efficient worst-case
algorithm does not

exist.

CS 473: ”Detour”
Accept that exact

provable solutions are
impossible. Pivot to

designing algorithms that
provide guaranteed

approximations.

CS 498: ”Launch”
NP-Hardness is a

worst-case warning, not a
law of physics. Use
SAT/SMT solvers to
crush real-world

instances. No more
Grantees.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 7 / 53

The “NP-Hard” Perspective

CS 374: ”Stop”
Proving a problem is

NP-Hard is the end of the
conversation. It means an

efficient worst-case
algorithm does not

exist.

CS 473: ”Detour”
Accept that exact

provable solutions are
impossible. Pivot to

designing algorithms that
provide guaranteed

approximations.

CS 498: ”Launch”
NP-Hardness is a

worst-case warning, not a
law of physics. Use
SAT/SMT solvers to
crush real-world

instances. No more
Grantees.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 7 / 53

The “NP-Hard” Perspective

CS 374: ”Stop”
Proving a problem is

NP-Hard is the end of the
conversation. It means an

efficient worst-case
algorithm does not

exist.

CS 473: ”Detour”
Accept that exact

provable solutions are
impossible. Pivot to

designing algorithms that
provide guaranteed

approximations.

CS 498: ”Launch”
NP-Hardness is a

worst-case warning, not a
law of physics. Use
SAT/SMT solvers to
crush real-world

instances. No more
Grantees.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 7 / 53

Modern Tooling Stack

We move beyond “pseudocode” to industrial-grade Python libraries used in
Operations Research and Deep Learning.

Optimization:
Gurobi, Pyomo (Linear & Integer Programming)

Logic & Verification:
Z3, PySAT (SMT & SAT Solvers)

Differentiation:
PyTorch (Autograd & Neural Networks)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 8 / 53

Course Comparison Matrix

Feature CS 374 / 473 CS 498

Primary Goal Proofs & Analysis Models & Implementations

Hardness Prove it’s impossible in
worst case

Use solvers to solve your
instance anyway

Key Tools Pencil, Paper, LaTeX Gurobi, Z3, PyTorch, ...

Style Purely Theoretical Hybrid (Basics of Theory +
Implementation)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 9 / 53

1 Course Logistics
Differences from CS374 and CS473
Content and Types of Projects in Class
Prerequisites
Grading
LLM Usage Policy

2 History of Linear Programming

3 Linear Programming: The Basics

4 The Engineer’s Diet Dilemma

5 Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 10 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming

Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems

First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques

Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.

PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals

Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods

SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)

Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)

Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis

Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)

LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.

Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Content and Types of Projects in Class
Part I: Discrete Optimization

Linear & Integer Programming
Modeling with Gurobi

Supply chain & Network models

Part II: Differentiable Systems
First order and Second Order
Optimization Techniques
Genetic Algorithms and
Metaheuristics.
PyTorch & Autograd internals
Convex and Non-convex
optimization

Part III: Formal Methods
SAT & SMT Solvers (Z3, PySAT)
Logic encodings (Sudoku,
Scheduling)
Automated verification and Solving
Puzzles with SAT/SMT Solvers

Parts IV & V: Synthesis
Data-Driven Optimization (aka
Data Science)
LLMs as Reasoning Engines,
prompting, consistency, etc.
Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11 / 53

Projects I: Optimization & Logic

1. The “Fleetline” Challenge (Week 3)

▶ A real problem from a YC startup (Who are giving us a guest lecture).
▶ Problem: You must assign truck drivers to loads to maximize revenue while

respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).

2. SMT for Scheduling (Week 9)
▶ Solve very complex Puzzles beyond most humans reach using SMT solvers.
▶ Learn to encode massive real-world scheduling conflicts into SMT Solvers (Z3).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 12 / 53

Projects I: Optimization & Logic

1. The “Fleetline” Challenge (Week 3)
▶ A real problem from a YC startup (Who are giving us a guest lecture).
▶ Problem: You must assign truck drivers to loads to maximize revenue while

respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).

2. SMT for Scheduling (Week 9)
▶ Solve very complex Puzzles beyond most humans reach using SMT solvers.
▶ Learn to encode massive real-world scheduling conflicts into SMT Solvers (Z3).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 12 / 53

Projects I: Optimization & Logic

1. The “Fleetline” Challenge (Week 3)
▶ A real problem from a YC startup (Who are giving us a guest lecture).
▶ Problem: You must assign truck drivers to loads to maximize revenue while

respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).

2. SMT for Scheduling (Week 9)

▶ Solve very complex Puzzles beyond most humans reach using SMT solvers.
▶ Learn to encode massive real-world scheduling conflicts into SMT Solvers (Z3).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 12 / 53

Projects I: Optimization & Logic

1. The “Fleetline” Challenge (Week 3)
▶ A real problem from a YC startup (Who are giving us a guest lecture).
▶ Problem: You must assign truck drivers to loads to maximize revenue while

respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).

2. SMT for Scheduling (Week 9)
▶ Solve very complex Puzzles beyond most humans reach using SMT solvers.

▶ Learn to encode massive real-world scheduling conflicts into SMT Solvers (Z3).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 12 / 53

Projects I: Optimization & Logic

1. The “Fleetline” Challenge (Week 3)
▶ A real problem from a YC startup (Who are giving us a guest lecture).
▶ Problem: You must assign truck drivers to loads to maximize revenue while

respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).

2. SMT for Scheduling (Week 9)
▶ Solve very complex Puzzles beyond most humans reach using SMT solvers.
▶ Learn to encode massive real-world scheduling conflicts into SMT Solvers (Z3).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 12 / 53

Projects I: Optimization & Logic

1. The “Fleetline” Challenge (Week 3)
▶ A real problem from a YC startup (Who are giving us a guest lecture).
▶ Problem: You must assign truck drivers to loads to maximize revenue while

respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).

2. SMT for Scheduling (Week 9)
▶ Solve very complex Puzzles beyond most humans reach using SMT solvers.
▶ Learn to encode massive real-world scheduling conflicts into SMT Solvers (Z3).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 12 / 53

Projects II: AI & Neurosymbolic Agents
3. Evolution & Gradients (Week 6-7)

▶ Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

▶ Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

4. Data-Driven Pipelines (Week 11)
Build end-to-end ML pipelines (feature engineering, regression) to predict real-world
parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

5. The AIME Agent (Week 14)
Build a neurosymbolic reasoning agent to solve Math Olympiad (AIME) problems.
You will engineer prompts, implement self-consistency checks, and use open-source
LLMs to tackle high-level reasoning tasks.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13 / 53

Projects II: AI & Neurosymbolic Agents
3. Evolution & Gradients (Week 6-7)

▶ Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

▶ Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

4. Data-Driven Pipelines (Week 11)
Build end-to-end ML pipelines (feature engineering, regression) to predict real-world
parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

5. The AIME Agent (Week 14)
Build a neurosymbolic reasoning agent to solve Math Olympiad (AIME) problems.
You will engineer prompts, implement self-consistency checks, and use open-source
LLMs to tackle high-level reasoning tasks.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13 / 53

Projects II: AI & Neurosymbolic Agents
3. Evolution & Gradients (Week 6-7)

▶ Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

▶ Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

4. Data-Driven Pipelines (Week 11)
Build end-to-end ML pipelines (feature engineering, regression) to predict real-world
parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

5. The AIME Agent (Week 14)
Build a neurosymbolic reasoning agent to solve Math Olympiad (AIME) problems.
You will engineer prompts, implement self-consistency checks, and use open-source
LLMs to tackle high-level reasoning tasks.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13 / 53

Projects II: AI & Neurosymbolic Agents
3. Evolution & Gradients (Week 6-7)

▶ Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

▶ Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

4. Data-Driven Pipelines (Week 11)

Build end-to-end ML pipelines (feature engineering, regression) to predict real-world
parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

5. The AIME Agent (Week 14)
Build a neurosymbolic reasoning agent to solve Math Olympiad (AIME) problems.
You will engineer prompts, implement self-consistency checks, and use open-source
LLMs to tackle high-level reasoning tasks.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13 / 53

Projects II: AI & Neurosymbolic Agents
3. Evolution & Gradients (Week 6-7)

▶ Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

▶ Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

4. Data-Driven Pipelines (Week 11)
Build end-to-end ML pipelines (feature engineering, regression) to predict real-world
parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

5. The AIME Agent (Week 14)
Build a neurosymbolic reasoning agent to solve Math Olympiad (AIME) problems.
You will engineer prompts, implement self-consistency checks, and use open-source
LLMs to tackle high-level reasoning tasks.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13 / 53

Projects II: AI & Neurosymbolic Agents
3. Evolution & Gradients (Week 6-7)

▶ Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

▶ Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

4. Data-Driven Pipelines (Week 11)
Build end-to-end ML pipelines (feature engineering, regression) to predict real-world
parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

5. The AIME Agent (Week 14)

Build a neurosymbolic reasoning agent to solve Math Olympiad (AIME) problems.
You will engineer prompts, implement self-consistency checks, and use open-source
LLMs to tackle high-level reasoning tasks.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13 / 53

Projects II: AI & Neurosymbolic Agents
3. Evolution & Gradients (Week 6-7)

▶ Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

▶ Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

4. Data-Driven Pipelines (Week 11)
Build end-to-end ML pipelines (feature engineering, regression) to predict real-world
parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

5. The AIME Agent (Week 14)
Build a neurosymbolic reasoning agent to solve Math Olympiad (AIME) problems.
You will engineer prompts, implement self-consistency checks, and use open-source
LLMs to tackle high-level reasoning tasks.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13 / 53

Projects II: AI & Neurosymbolic Agents
3. Evolution & Gradients (Week 6-7)

▶ Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

▶ Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

4. Data-Driven Pipelines (Week 11)
Build end-to-end ML pipelines (feature engineering, regression) to predict real-world
parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

5. The AIME Agent (Week 14)
Build a neurosymbolic reasoning agent to solve Math Olympiad (AIME) problems.
You will engineer prompts, implement self-consistency checks, and use open-source
LLMs to tackle high-level reasoning tasks.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13 / 53

1 Course Logistics
Differences from CS374 and CS473
Content and Types of Projects in Class
Prerequisites
Grading
LLM Usage Policy

2 History of Linear Programming

3 Linear Programming: The Basics

4 The Engineer’s Diet Dilemma

5 Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 14 / 53

Prerequisites

1. Theory
CS 374 is assumed.
We won’t reteach NP-Hardness; we
assume you know what it implies.

2. Attitude
Coding Heavy: This is an
engineering class.
Resilience: You must be willing to
read documentation, debug strange
library errors, and explore new tools.

3. Coding

Python Literacy Check
import numpy as np

A = np.array([[1, 2], [3, 4]])
b = np.array([5, 6])

If you know what this does

x = np.linalg.solve(A, b)

or can look it up quick
...you're Gucci.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 15 / 53

Prerequisites

1. Theory
CS 374 is assumed.
We won’t reteach NP-Hardness; we
assume you know what it implies.

2. Attitude
Coding Heavy: This is an
engineering class.
Resilience: You must be willing to
read documentation, debug strange
library errors, and explore new tools.

3. Coding

Python Literacy Check
import numpy as np

A = np.array([[1, 2], [3, 4]])
b = np.array([5, 6])

If you know what this does

x = np.linalg.solve(A, b)

or can look it up quick
...you're Gucci.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 15 / 53

Prerequisites

1. Theory
CS 374 is assumed.
We won’t reteach NP-Hardness; we
assume you know what it implies.

2. Attitude
Coding Heavy: This is an
engineering class.
Resilience: You must be willing to
read documentation, debug strange
library errors, and explore new tools.

3. Coding

Python Literacy Check
import numpy as np

A = np.array([[1, 2], [3, 4]])
b = np.array([5, 6])

If you know what this does

x = np.linalg.solve(A, b)

or can look it up quick
...you're Gucci.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 15 / 53

1 Course Logistics
Differences from CS374 and CS473
Content and Types of Projects in Class
Prerequisites
Grading
LLM Usage Policy

2 History of Linear Programming

3 Linear Programming: The Basics

4 The Engineer’s Diet Dilemma

5 Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 16 / 53

Grading Structure

60%
Weekly Homeworks

Groups of 2-4.
The more, the
merrier.
High volume of
problems; working
alone is a competitive
disadvantage.

10%
3 ”Pulse Checks”

After Parts I, II, III.
In-class, short,
individual quizzes.
Goal: Check if you
are alive.
If you understand the
bare minimum, you
get 100%.

30%
Individual Final Project

Algorithmic
Engineering.
Build a system,
implement a paper,
or optimize a
complex pipeline.
Compare
performance
(speed/quality).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 17 / 53

Grading Structure

60%
Weekly Homeworks

Groups of 2-4.
The more, the
merrier.
High volume of
problems; working
alone is a competitive
disadvantage.

10%
3 ”Pulse Checks”

After Parts I, II, III.
In-class, short,
individual quizzes.
Goal: Check if you
are alive.
If you understand the
bare minimum, you
get 100%.

30%
Individual Final Project

Algorithmic
Engineering.
Build a system,
implement a paper,
or optimize a
complex pipeline.
Compare
performance
(speed/quality).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 17 / 53

Grading Structure

60%
Weekly Homeworks

Groups of 2-4.
The more, the
merrier.
High volume of
problems; working
alone is a competitive
disadvantage.

10%
3 ”Pulse Checks”

After Parts I, II, III.
In-class, short,
individual quizzes.
Goal: Check if you
are alive.
If you understand the
bare minimum, you
get 100%.

30%
Individual Final Project

Algorithmic
Engineering.
Build a system,
implement a paper,
or optimize a
complex pipeline.
Compare
performance
(speed/quality).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 17 / 53

1 Course Logistics
Differences from CS374 and CS473
Content and Types of Projects in Class
Prerequisites
Grading
LLM Usage Policy

2 History of Linear Programming

3 Linear Programming: The Basics

4 The Engineer’s Diet Dilemma

5 Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 18 / 53

LLM Usage Policy: “Productivity, not Replacement”

The Rule:
You CAN use LLMs (ChatGPT, Gemini, Claude, Copilot).

You MUST acknowledge usage and explain exactly what you asked the LLM
to do.

The “Random Audit”:
Each week, random students will be asked to explain their code/solutions
in person.
If you blind-copied without understanding → Big Problems.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 19 / 53

LLM Usage Policy: “Productivity, not Replacement”

The Rule:
You CAN use LLMs (ChatGPT, Gemini, Claude, Copilot).
You MUST acknowledge usage and explain exactly what you asked the LLM
to do.

The “Random Audit”:
Each week, random students will be asked to explain their code/solutions
in person.
If you blind-copied without understanding → Big Problems.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 19 / 53

LLM Usage Policy: “Productivity, not Replacement”

The Rule:
You CAN use LLMs (ChatGPT, Gemini, Claude, Copilot).
You MUST acknowledge usage and explain exactly what you asked the LLM
to do.

The “Random Audit”:
Each week, random students will be asked to explain their code/solutions
in person.

If you blind-copied without understanding → Big Problems.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 19 / 53

LLM Usage Policy: “Productivity, not Replacement”

The Rule:
You CAN use LLMs (ChatGPT, Gemini, Claude, Copilot).
You MUST acknowledge usage and explain exactly what you asked the LLM
to do.

The “Random Audit”:
Each week, random students will be asked to explain their code/solutions
in person.
If you blind-copied without understanding → Big Problems.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 19 / 53

LLM Usage Policy: “Productivity, not Replacement”

Kosher vs. Not Kosher
✓Good:

“Write a Python function to parse this DIMACS file format.”

“Here is an Algorithm to solve this problem ... Encode the constraint this way ...
Please implement my idea in Python.”

X Bad:
“Here is the PDF of the homework, solve Problem 3 for me.”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 20 / 53

LLM Usage Policy: “Productivity, not Replacement”

Kosher vs. Not Kosher
✓Good:

“Write a Python function to parse this DIMACS file format.”

“Here is an Algorithm to solve this problem ... Encode the constraint this way ...
Please implement my idea in Python.”

X Bad:
“Here is the PDF of the homework, solve Problem 3 for me.”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 20 / 53

LLM Usage Policy: “Productivity, not Replacement”

Kosher vs. Not Kosher
✓Good:

“Write a Python function to parse this DIMACS file format.”

“Here is an Algorithm to solve this problem ... Encode the constraint this way ...
Please implement my idea in Python.”

X Bad:
“Here is the PDF of the homework, solve Problem 3 for me.”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 20 / 53

LLM Usage Policy: “Productivity, not Replacement”

Kosher vs. Not Kosher
✓Good:

“Write a Python function to parse this DIMACS file format.”

“Here is an Algorithm to solve this problem ... Encode the constraint this way ...
Please implement my idea in Python.”

X Bad:
“Here is the PDF of the homework, solve Problem 3 for me.”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 20 / 53

Questions?
Ready to build?

>

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 21 / 53

1 Course Logistics
Differences from CS374 and CS473
Content and Types of Projects in Class
Prerequisites
Grading
LLM Usage Policy

2 History of Linear Programming

3 Linear Programming: The Basics

4 The Engineer’s Diet Dilemma

5 Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 22 / 53

The Toy Factory Example

Scenario: You build two products: Widgets (x1) and Gadgets (x2).

Profits:
Widget: $3 profit
Gadget: $4 profit

Constraints:
Metal: Have 10kg. Widget uses 1,
Gadget uses 2.
Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

The LP Model:

max 3x1 + 4x2

s.t. 1x1 + 2x2 ≤ 10
2x1 + 1x2 ≤ 15
x1, x2 ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 23 / 53

The Toy Factory Example

Scenario: You build two products: Widgets (x1) and Gadgets (x2).
Profits:

Widget: $3 profit
Gadget: $4 profit

Constraints:
Metal: Have 10kg. Widget uses 1,
Gadget uses 2.
Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

The LP Model:

max 3x1 + 4x2

s.t. 1x1 + 2x2 ≤ 10
2x1 + 1x2 ≤ 15
x1, x2 ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 23 / 53

The Toy Factory Example

Scenario: You build two products: Widgets (x1) and Gadgets (x2).
Profits:

Widget: $3 profit
Gadget: $4 profit

Constraints:
Metal: Have 10kg. Widget uses 1,
Gadget uses 2.

Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

The LP Model:

max 3x1 + 4x2

s.t. 1x1 + 2x2 ≤ 10
2x1 + 1x2 ≤ 15
x1, x2 ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 23 / 53

The Toy Factory Example

Scenario: You build two products: Widgets (x1) and Gadgets (x2).
Profits:

Widget: $3 profit
Gadget: $4 profit

Constraints:
Metal: Have 10kg. Widget uses 1,
Gadget uses 2.
Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

The LP Model:

max 3x1 + 4x2

s.t. 1x1 + 2x2 ≤ 10
2x1 + 1x2 ≤ 15
x1, x2 ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 23 / 53

The Toy Factory Example

Scenario: You build two products: Widgets (x1) and Gadgets (x2).
Profits:

Widget: $3 profit
Gadget: $4 profit

Constraints:
Metal: Have 10kg. Widget uses 1,
Gadget uses 2.
Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

The LP Model:

max 3x1 + 4x2

s.t. 1x1 + 2x2 ≤ 10
2x1 + 1x2 ≤ 15
x1, x2 ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 23 / 53

The Toy Factory Example

Scenario: You build two products: Widgets (x1) and Gadgets (x2).
Profits:

Widget: $3 profit
Gadget: $4 profit

Constraints:
Metal: Have 10kg. Widget uses 1,
Gadget uses 2.
Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

The LP Model:

max 3x1 + 4x2

s.t. 1x1 + 2x2 ≤ 10

2x1 + 1x2 ≤ 15
x1, x2 ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 23 / 53

The Toy Factory Example

Scenario: You build two products: Widgets (x1) and Gadgets (x2).
Profits:

Widget: $3 profit
Gadget: $4 profit

Constraints:
Metal: Have 10kg. Widget uses 1,
Gadget uses 2.
Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

The LP Model:

max 3x1 + 4x2

s.t. 1x1 + 2x2 ≤ 10
2x1 + 1x2 ≤ 15

x1, x2 ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 23 / 53

The Toy Factory Example

Scenario: You build two products: Widgets (x1) and Gadgets (x2).
Profits:

Widget: $3 profit
Gadget: $4 profit

Constraints:
Metal: Have 10kg. Widget uses 1,
Gadget uses 2.
Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

The LP Model:

max 3x1 + 4x2

s.t. 1x1 + 2x2 ≤ 10
2x1 + 1x2 ≤ 15
x1, x2 ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 23 / 53

Act I: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical
equation was unknown.

Fourier (1823): Solved small systems of
inequalities.
Leonid Kantorovich (1939): Invented LP in
the USSR to optimize plywood production.
The Tragedy: The Soviet government
ignored him. His work remained unknown to
the West for decades.

Motzkin’s Thesis (1936)
Listed only 42 papers in all
of history on linear
inequalities. Today, there
are tens of thousands per
year.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 24 / 53

Act I: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical
equation was unknown.

Fourier (1823): Solved small systems of
inequalities.

Leonid Kantorovich (1939): Invented LP in
the USSR to optimize plywood production.
The Tragedy: The Soviet government
ignored him. His work remained unknown to
the West for decades.

Motzkin’s Thesis (1936)
Listed only 42 papers in all
of history on linear
inequalities. Today, there
are tens of thousands per
year.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 24 / 53

Act I: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical
equation was unknown.

Fourier (1823): Solved small systems of
inequalities.
Leonid Kantorovich (1939): Invented LP in
the USSR to optimize plywood production.

The Tragedy: The Soviet government
ignored him. His work remained unknown to
the West for decades.

Motzkin’s Thesis (1936)
Listed only 42 papers in all
of history on linear
inequalities. Today, there
are tens of thousands per
year.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 24 / 53

Act I: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical
equation was unknown.

Fourier (1823): Solved small systems of
inequalities.
Leonid Kantorovich (1939): Invented LP in
the USSR to optimize plywood production.
The Tragedy: The Soviet government
ignored him. His work remained unknown to
the West for decades.

Motzkin’s Thesis (1936)
Listed only 42 papers in all
of history on linear
inequalities. Today, there
are tens of thousands per
year.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 24 / 53

Act I: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical
equation was unknown.

Fourier (1823): Solved small systems of
inequalities.
Leonid Kantorovich (1939): Invented LP in
the USSR to optimize plywood production.
The Tragedy: The Soviet government
ignored him. His work remained unknown to
the West for decades.

Motzkin’s Thesis (1936)
Listed only 42 papers in all
of history on linear
inequalities. Today, there
are tens of thousands per
year.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 24 / 53

Act II: WWII & George Dantzig

The Setup:
George Dantzig spent WWII planning US Air Force logistics by hand.

1946: The Air Force asks: “Can you mechanize the planning process?”
He built a dynamic model of resources and activities, but something was
missing.
Dantzig realized he needed an Explicit Objective Function to optimize on
top of his linear constraints.
But how to solve a system with thousands of linear constraints and linear
objective? He needed help.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 25 / 53

Act II: WWII & George Dantzig

The Setup:
George Dantzig spent WWII planning US Air Force logistics by hand.
1946: The Air Force asks: “Can you mechanize the planning process?”

He built a dynamic model of resources and activities, but something was
missing.
Dantzig realized he needed an Explicit Objective Function to optimize on
top of his linear constraints.
But how to solve a system with thousands of linear constraints and linear
objective? He needed help.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 25 / 53

Act II: WWII & George Dantzig

The Setup:
George Dantzig spent WWII planning US Air Force logistics by hand.
1946: The Air Force asks: “Can you mechanize the planning process?”
He built a dynamic model of resources and activities, but something was
missing.

Dantzig realized he needed an Explicit Objective Function to optimize on
top of his linear constraints.
But how to solve a system with thousands of linear constraints and linear
objective? He needed help.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 25 / 53

Act II: WWII & George Dantzig

The Setup:
George Dantzig spent WWII planning US Air Force logistics by hand.
1946: The Air Force asks: “Can you mechanize the planning process?”
He built a dynamic model of resources and activities, but something was
missing.
Dantzig realized he needed an Explicit Objective Function to optimize on
top of his linear constraints.

But how to solve a system with thousands of linear constraints and linear
objective? He needed help.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 25 / 53

Act II: WWII & George Dantzig

The Setup:
George Dantzig spent WWII planning US Air Force logistics by hand.
1946: The Air Force asks: “Can you mechanize the planning process?”
He built a dynamic model of resources and activities, but something was
missing.
Dantzig realized he needed an Explicit Objective Function to optimize on
top of his linear constraints.
But how to solve a system with thousands of linear constraints and linear
objective? He needed help.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 25 / 53

Act III: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.

1 Dantzig starts explaining his Air Force model in tedious detail.
2 Von Neumann cuts him off: “Get to the point.”
3 Dantzig writes the linear programming problem on the board.

The Revelation
Von Neumann stands up: “Oh—that!”
He proceeds to lecture Dantzig for 90 minutes on Duality and Geometry.
Von Neumann had already derived the theory of LP while inventing Game Theory.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 26 / 53

Act III: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.

1 Dantzig starts explaining his Air Force model in tedious detail.

2 Von Neumann cuts him off: “Get to the point.”
3 Dantzig writes the linear programming problem on the board.

The Revelation
Von Neumann stands up: “Oh—that!”
He proceeds to lecture Dantzig for 90 minutes on Duality and Geometry.
Von Neumann had already derived the theory of LP while inventing Game Theory.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 26 / 53

Act III: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.

1 Dantzig starts explaining his Air Force model in tedious detail.
2 Von Neumann cuts him off: “Get to the point.”

3 Dantzig writes the linear programming problem on the board.

The Revelation
Von Neumann stands up: “Oh—that!”
He proceeds to lecture Dantzig for 90 minutes on Duality and Geometry.
Von Neumann had already derived the theory of LP while inventing Game Theory.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 26 / 53

Act III: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.

1 Dantzig starts explaining his Air Force model in tedious detail.
2 Von Neumann cuts him off: “Get to the point.”
3 Dantzig writes the linear programming problem on the board.

The Revelation
Von Neumann stands up: “Oh—that!”
He proceeds to lecture Dantzig for 90 minutes on Duality and Geometry.
Von Neumann had already derived the theory of LP while inventing Game Theory.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 26 / 53

Act III: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.

1 Dantzig starts explaining his Air Force model in tedious detail.
2 Von Neumann cuts him off: “Get to the point.”
3 Dantzig writes the linear programming problem on the board.

The Revelation
Von Neumann stands up: “Oh—that!”
He proceeds to lecture Dantzig for 90 minutes on Duality and Geometry.
Von Neumann had already derived the theory of LP while inventing Game Theory.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 26 / 53

Act IV: The Mic Drop

Conference, 1948: Dantzig presents LP to a room of heavyweights.
Harold Hotelling (Economics Giant) stands up:

“But we all know the world is non-linear.”

Dantzig freezes. The room goes silent. Then Von Neumann raises his hand:

“If the axioms of linear programming fit your problem, use it.
If not, don’t.”

He sat down. The field of Linear Programming was born.

For more historical readings, read “REMINISCENCES ABOUT THE ORIGINS OF
LINEAR PROGRAMMING” by Dantzig himself!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 27 / 53

Act IV: The Mic Drop

Conference, 1948: Dantzig presents LP to a room of heavyweights.
Harold Hotelling (Economics Giant) stands up:

“But we all know the world is non-linear.”

Dantzig freezes. The room goes silent. Then Von Neumann raises his hand:

“If the axioms of linear programming fit your problem, use it.
If not, don’t.”

He sat down. The field of Linear Programming was born.

For more historical readings, read “REMINISCENCES ABOUT THE ORIGINS OF
LINEAR PROGRAMMING” by Dantzig himself!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 27 / 53

Act IV: The Mic Drop

Conference, 1948: Dantzig presents LP to a room of heavyweights.
Harold Hotelling (Economics Giant) stands up:

“But we all know the world is non-linear.”

Dantzig freezes. The room goes silent. Then Von Neumann raises his hand:

“If the axioms of linear programming fit your problem, use it.
If not, don’t.”

He sat down. The field of Linear Programming was born.

For more historical readings, read “REMINISCENCES ABOUT THE ORIGINS OF
LINEAR PROGRAMMING” by Dantzig himself!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 27 / 53

1 Course Logistics
Differences from CS374 and CS473
Content and Types of Projects in Class
Prerequisites
Grading
LLM Usage Policy

2 History of Linear Programming

3 Linear Programming: The Basics

4 The Engineer’s Diet Dilemma

5 Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 28 / 53

The Toy Factory Example

Scenario: You build two products: Widgets (x1) and Gadgets (x2).
Profits:

Widget: $3 profit
Gadget: $4 profit

Constraints:
Metal: Have 10kg. Widget uses 1,
Gadget uses 2.
Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

The LP Model:

max 3x1 + 4x2

s.t. 1x1 + 2x2 ≤ 10
2x1 + 1x2 ≤ 15
x1, x2 ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 29 / 53

The Canonical Form
Every LP can be written in Matrix Notation: maxcT x s.t. Ax ≤ b.

For our Factory:

[
3
4

]T

︸ ︷︷ ︸
cT

[
x1

x2

]
︸︷︷︸

x

subject to


1 2
2 1
−1 0
0 −1


︸ ︷︷ ︸

A

[
x1

x2

]
︸︷︷︸

x

≤


10
15
0
0


︸ ︷︷ ︸

b

x: Decision Variables (The knobs we turn).
c: Objective Coefficients (Profits/Costs).
A: Constraint Matrix (Resource usage).
b: Right-Hand Side (Capacities).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 30 / 53

The Canonical Form
Every LP can be written in Matrix Notation: maxcT x s.t. Ax ≤ b.

For our Factory:

[
3
4

]T

︸ ︷︷ ︸
cT

[
x1

x2

]
︸︷︷︸

x

subject to


1 2
2 1
−1 0
0 −1


︸ ︷︷ ︸

A

[
x1

x2

]
︸︷︷︸

x

≤


10
15
0
0


︸ ︷︷ ︸

b

x: Decision Variables (The knobs we turn).
c: Objective Coefficients (Profits/Costs).
A: Constraint Matrix (Resource usage).
b: Right-Hand Side (Capacities).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 30 / 53

The Canonical Form
Every LP can be written in Matrix Notation: maxcT x s.t. Ax ≤ b.

For our Factory:

[
3
4

]T

︸ ︷︷ ︸
cT

[
x1

x2

]
︸︷︷︸

x

subject to


1 2
2 1
−1 0
0 −1


︸ ︷︷ ︸

A

[
x1

x2

]
︸︷︷︸

x

≤


10
15
0
0


︸ ︷︷ ︸

b

x: Decision Variables (The knobs we turn).
c: Objective Coefficients (Profits/Costs).
A: Constraint Matrix (Resource usage).
b: Right-Hand Side (Capacities).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 30 / 53

The Canonical Form
Every LP can be written in Matrix Notation: maxcT x s.t. Ax ≤ b.

For our Factory:

[
3
4

]T

︸ ︷︷ ︸
cT

[
x1

x2

]
︸︷︷︸

x

subject to


1 2
2 1
−1 0
0 −1


︸ ︷︷ ︸

A

[
x1

x2

]
︸︷︷︸

x

≤


10
15
0
0


︸ ︷︷ ︸

b

x: Decision Variables (The knobs we turn).
c: Objective Coefficients (Profits/Costs).
A: Constraint Matrix (Resource usage).
b: Right-Hand Side (Capacities).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 30 / 53

The Canonical Form
Every LP can be written in Matrix Notation: maxcT x s.t. Ax ≤ b.

For our Factory:

[
3
4

]T

︸ ︷︷ ︸
cT

[
x1

x2

]
︸︷︷︸

x

subject to


1 2
2 1
−1 0
0 −1


︸ ︷︷ ︸

A

[
x1

x2

]
︸︷︷︸

x

≤


10
15
0
0


︸ ︷︷ ︸

b

x: Decision Variables (The knobs we turn).
c: Objective Coefficients (Profits/Costs).
A: Constraint Matrix (Resource usage).
b: Right-Hand Side (Capacities).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 30 / 53

Pathologies: When things go wrong

Before we solve it, what if we can’t?

1. Infeasibility
No solution satisfies all constraints.

x ≤ 2 AND x ≥ 3

The feasible region is Empty.
Gurobi: Model is infeasible.

2. Unboundedness
The region is open in the direction of
improvement.

max x s.t. x ≥ 5

You can increase profit to ∞.
Gurobi: Model is unbounded.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 31 / 53

Pathologies: When things go wrong

Before we solve it, what if we can’t?

1. Infeasibility
No solution satisfies all constraints.

x ≤ 2 AND x ≥ 3

The feasible region is Empty.
Gurobi: Model is infeasible.

2. Unboundedness
The region is open in the direction of
improvement.

max x s.t. x ≥ 5

You can increase profit to ∞.
Gurobi: Model is unbounded.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 31 / 53

Pathologies: When things go wrong

Before we solve it, what if we can’t?

1. Infeasibility
No solution satisfies all constraints.

x ≤ 2 AND x ≥ 3

The feasible region is Empty.
Gurobi: Model is infeasible.

2. Unboundedness
The region is open in the direction of
improvement.

max x s.t. x ≥ 5

You can increase profit to ∞.
Gurobi: Model is unbounded.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 31 / 53

Geometry: The Feasible Region

x1

x2

Metal (x1 + 2x2 ≤ 10)
Wood (2x1 + x2 ≤ 15)

Profit Direction (3x + 4y = 20)

Optimal Vertex

0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 32 / 53

Geometry: The Feasible Region

x1

x2

Metal (x1 + 2x2 ≤ 10)

Wood (2x1 + x2 ≤ 15)

Profit Direction (3x + 4y = 20)

Optimal Vertex

0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 32 / 53

Geometry: The Feasible Region

x1

x2

Metal (x1 + 2x2 ≤ 10)
Wood (2x1 + x2 ≤ 15)

Profit Direction (3x + 4y = 20)

Optimal Vertex

0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 32 / 53

Geometry: The Feasible Region

x1

x2

Metal (x1 + 2x2 ≤ 10)
Wood (2x1 + x2 ≤ 15)

Profit Direction (3x + 4y = 20)

Optimal Vertex

0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 32 / 53

Geometry: The Feasible Region

x1

x2

Metal (x1 + 2x2 ≤ 10)
Wood (2x1 + x2 ≤ 15)

Profit Direction (3x + 4y = 20)

Optimal Vertex

0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 32 / 53

Geometry: The Feasible Region

x1

x2

Metal (x1 + 2x2 ≤ 10)
Wood (2x1 + x2 ≤ 15)

Profit Direction (3x + 4y = 20)

Optimal Vertex

0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 32 / 53

Geometry: The Feasible Region

x1

x2

Metal (x1 + 2x2 ≤ 10)
Wood (2x1 + x2 ≤ 15)

Profit Direction (3x + 4y = 20)

Optimal Vertex

0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 32 / 53

2D

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 33 / 53

3D

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 34 / 53

The Fundamental Theorem of LP

Theorem
If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):
1 Any point x in the polytope is a weighted average (convex combination) of

the polytope’s vertices v1, . . . , vk : x =
∑

αivi with
∑

i αi = 1, αi ≥ 0.
2 The objective f (x) = cT x is linear.
3 Linearity means f (x) = f (

∑
i αivi) =

∑
i αi f (vi).

4 An average cannot be larger than the maximum of its components.
5 Therefore, f (x) ≤ maxi f (vi). The max is at a corner!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 35 / 53

The Fundamental Theorem of LP

Theorem
If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):
1 Any point x in the polytope is a weighted average (convex combination) of

the polytope’s vertices v1, . . . , vk : x =
∑

αivi with
∑

i αi = 1, αi ≥ 0.

2 The objective f (x) = cT x is linear.
3 Linearity means f (x) = f (

∑
i αivi) =

∑
i αi f (vi).

4 An average cannot be larger than the maximum of its components.
5 Therefore, f (x) ≤ maxi f (vi). The max is at a corner!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 35 / 53

The Fundamental Theorem of LP

Theorem
If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):
1 Any point x in the polytope is a weighted average (convex combination) of

the polytope’s vertices v1, . . . , vk : x =
∑

αivi with
∑

i αi = 1, αi ≥ 0.
2 The objective f (x) = cT x is linear.

3 Linearity means f (x) = f (
∑

i αivi) =
∑

i αi f (vi).
4 An average cannot be larger than the maximum of its components.
5 Therefore, f (x) ≤ maxi f (vi). The max is at a corner!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 35 / 53

The Fundamental Theorem of LP

Theorem
If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):
1 Any point x in the polytope is a weighted average (convex combination) of

the polytope’s vertices v1, . . . , vk : x =
∑

αivi with
∑

i αi = 1, αi ≥ 0.
2 The objective f (x) = cT x is linear.
3 Linearity means f (x) = f (

∑
i αivi) =

∑
i αi f (vi).

4 An average cannot be larger than the maximum of its components.
5 Therefore, f (x) ≤ maxi f (vi). The max is at a corner!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 35 / 53

The Fundamental Theorem of LP

Theorem
If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):
1 Any point x in the polytope is a weighted average (convex combination) of

the polytope’s vertices v1, . . . , vk : x =
∑

αivi with
∑

i αi = 1, αi ≥ 0.
2 The objective f (x) = cT x is linear.
3 Linearity means f (x) = f (

∑
i αivi) =

∑
i αi f (vi).

4 An average cannot be larger than the maximum of its components.

5 Therefore, f (x) ≤ maxi f (vi). The max is at a corner!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 35 / 53

The Fundamental Theorem of LP

Theorem
If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):
1 Any point x in the polytope is a weighted average (convex combination) of

the polytope’s vertices v1, . . . , vk : x =
∑

αivi with
∑

i αi = 1, αi ≥ 0.
2 The objective f (x) = cT x is linear.
3 Linearity means f (x) = f (

∑
i αivi) =

∑
i αi f (vi).

4 An average cannot be larger than the maximum of its components.
5 Therefore, f (x) ≤ maxi f (vi). The max is at a corner!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 35 / 53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory")

Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

Objective
m.setObjective(3*x1 + 4*x2, GRB.MAXIMIZE)

Constraints
m.addConstr(1*x1 + 2*x2 <= 10, "metal")
m.addConstr(2*x1 + 1*x2 <= 15, "wood")

m.optimize()

print(x1.X, x2.X)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36 / 53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.
import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory")

Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

Objective
m.setObjective(3*x1 + 4*x2, GRB.MAXIMIZE)

Constraints
m.addConstr(1*x1 + 2*x2 <= 10, "metal")
m.addConstr(2*x1 + 1*x2 <= 15, "wood")

m.optimize()

print(x1.X, x2.X)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36 / 53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.
import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory")

Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

Objective
m.setObjective(3*x1 + 4*x2, GRB.MAXIMIZE)

Constraints
m.addConstr(1*x1 + 2*x2 <= 10, "metal")
m.addConstr(2*x1 + 1*x2 <= 15, "wood")

m.optimize()

print(x1.X, x2.X)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36 / 53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.
import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory")

Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

Objective
m.setObjective(3*x1 + 4*x2, GRB.MAXIMIZE)

Constraints
m.addConstr(1*x1 + 2*x2 <= 10, "metal")
m.addConstr(2*x1 + 1*x2 <= 15, "wood")

m.optimize()

print(x1.X, x2.X)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36 / 53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.
import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory")

Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

Objective
m.setObjective(3*x1 + 4*x2, GRB.MAXIMIZE)

Constraints
m.addConstr(1*x1 + 2*x2 <= 10, "metal")
m.addConstr(2*x1 + 1*x2 <= 15, "wood")

m.optimize()

print(x1.X, x2.X)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36 / 53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.
import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory")

Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

Objective
m.setObjective(3*x1 + 4*x2, GRB.MAXIMIZE)

Constraints
m.addConstr(1*x1 + 2*x2 <= 10, "metal")
m.addConstr(2*x1 + 1*x2 <= 15, "wood")

m.optimize()

print(x1.X, x2.X)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36 / 53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.
import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory")

Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

Objective
m.setObjective(3*x1 + 4*x2, GRB.MAXIMIZE)

Constraints
m.addConstr(1*x1 + 2*x2 <= 10, "metal")
m.addConstr(2*x1 + 1*x2 <= 15, "wood")

m.optimize()

print(x1.X, x2.X)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36 / 53

1 Course Logistics
Differences from CS374 and CS473
Content and Types of Projects in Class
Prerequisites
Grading
LLM Usage Policy

2 History of Linear Programming

3 Linear Programming: The Basics

4 The Engineer’s Diet Dilemma

5 Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 37 / 53

The Scenario

OptiMeal Inc. has a conflict:
Finance Team: “Cut costs! Food is too expensive.”
Nutritionists: “We need to meet daily health requirements.”

Your Mission:
Use LP to design the cheapest daily meal plan.
You can eat fractional servings (e.g., 0.5 bananas).
Objective: Min Cost.
Constraints: Calorie floor, Protein floor, Sugar ceiling, etc.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 38 / 53

The Scenario

OptiMeal Inc. has a conflict:
Finance Team: “Cut costs! Food is too expensive.”
Nutritionists: “We need to meet daily health requirements.”

Your Mission:
Use LP to design the cheapest daily meal plan.

You can eat fractional servings (e.g., 0.5 bananas).
Objective: Min Cost.
Constraints: Calorie floor, Protein floor, Sugar ceiling, etc.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 38 / 53

The Scenario

OptiMeal Inc. has a conflict:
Finance Team: “Cut costs! Food is too expensive.”
Nutritionists: “We need to meet daily health requirements.”

Your Mission:
Use LP to design the cheapest daily meal plan.
You can eat fractional servings (e.g., 0.5 bananas).

Objective: Min Cost.
Constraints: Calorie floor, Protein floor, Sugar ceiling, etc.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 38 / 53

The Scenario

OptiMeal Inc. has a conflict:
Finance Team: “Cut costs! Food is too expensive.”
Nutritionists: “We need to meet daily health requirements.”

Your Mission:
Use LP to design the cheapest daily meal plan.
You can eat fractional servings (e.g., 0.5 bananas).
Objective: Min Cost.

Constraints: Calorie floor, Protein floor, Sugar ceiling, etc.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 38 / 53

The Scenario

OptiMeal Inc. has a conflict:
Finance Team: “Cut costs! Food is too expensive.”
Nutritionists: “We need to meet daily health requirements.”

Your Mission:
Use LP to design the cheapest daily meal plan.
You can eat fractional servings (e.g., 0.5 bananas).
Objective: Min Cost.
Constraints: Calorie floor, Protein floor, Sugar ceiling, etc.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 38 / 53

The Data (Nutrition & Costs)

Food Cost ($) Cal Prot (g) Carb (g) Sugar (g) Fiber (g) Fat (g)

Chicken 1.80 128 24.0 0.0 0.0 0.0 2.7
Banana 0.30 105 1.3 27.0 14.0 3.1 0.4
Yogurt 0.90 104 5.9 7.9 7.9 0.0 5.5
Beans 1.10 120 8.0 21.0 1.0 7.0 0.5
Spinach 0.40 7 0.9 1.1 0.1 0.7 0.1
Almonds 0.70 160 6.0 6.0 1.0 3.0 14.0

Requirements:

Calories ≥ 2000

Protein ≥ 100g

Fiber ≥ 50g

Sugar ≤ 50g

Fat ≤ 120g

Sodium ≤ 2300mg

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 39 / 53

The Data (Nutrition & Costs)

Food Cost ($) Cal Prot (g) Carb (g) Sugar (g) Fiber (g) Fat (g)

Chicken 1.80 128 24.0 0.0 0.0 0.0 2.7
Banana 0.30 105 1.3 27.0 14.0 3.1 0.4
Yogurt 0.90 104 5.9 7.9 7.9 0.0 5.5
Beans 1.10 120 8.0 21.0 1.0 7.0 0.5
Spinach 0.40 7 0.9 1.1 0.1 0.7 0.1
Almonds 0.70 160 6.0 6.0 1.0 3.0 14.0

Requirements:

Calories ≥ 2000

Protein ≥ 100g

Fiber ≥ 50g

Sugar ≤ 50g

Fat ≤ 120g

Sodium ≤ 2300mg

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 39 / 53

The Mathematical Model
Let xj be the number of servings of food j . Let cj be the cost of food j . Let aij be
the amount of nutrient i in food j .

min
∑

j∈Foods

cjxj (Minimize Cost)

s.t.
∑

j

Calj · xj ≥ 2000∑
j

Protj · xj ≥ 100∑
j

Sugarj · xj ≤ 50

. . .
xj ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40 / 53

The Mathematical Model
Let xj be the number of servings of food j . Let cj be the cost of food j . Let aij be
the amount of nutrient i in food j .

min
∑

j∈Foods

cjxj (Minimize Cost)

s.t.
∑

j

Calj · xj ≥ 2000∑
j

Protj · xj ≥ 100∑
j

Sugarj · xj ≤ 50

. . .
xj ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40 / 53

The Mathematical Model
Let xj be the number of servings of food j . Let cj be the cost of food j . Let aij be
the amount of nutrient i in food j .

min
∑

j∈Foods

cjxj (Minimize Cost)

s.t.
∑

j

Calj · xj ≥ 2000

∑
j

Protj · xj ≥ 100∑
j

Sugarj · xj ≤ 50

. . .
xj ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40 / 53

The Mathematical Model
Let xj be the number of servings of food j . Let cj be the cost of food j . Let aij be
the amount of nutrient i in food j .

min
∑

j∈Foods

cjxj (Minimize Cost)

s.t.
∑

j

Calj · xj ≥ 2000∑
j

Protj · xj ≥ 100

∑
j

Sugarj · xj ≤ 50

. . .
xj ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40 / 53

The Mathematical Model
Let xj be the number of servings of food j . Let cj be the cost of food j . Let aij be
the amount of nutrient i in food j .

min
∑

j∈Foods

cjxj (Minimize Cost)

s.t.
∑

j

Calj · xj ≥ 2000∑
j

Protj · xj ≥ 100∑
j

Sugarj · xj ≤ 50

. . .
xj ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40 / 53

The Mathematical Model
Let xj be the number of servings of food j . Let cj be the cost of food j . Let aij be
the amount of nutrient i in food j .

min
∑

j∈Foods

cjxj (Minimize Cost)

s.t.
∑

j

Calj · xj ≥ 2000∑
j

Protj · xj ≥ 100∑
j

Sugarj · xj ≤ 50

. . .

xj ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40 / 53

The Mathematical Model
Let xj be the number of servings of food j . Let cj be the cost of food j . Let aij be
the amount of nutrient i in food j .

min
∑

j∈Foods

cjxj (Minimize Cost)

s.t.
∑

j

Calj · xj ≥ 2000∑
j

Protj · xj ≥ 100∑
j

Sugarj · xj ≤ 50

. . .
xj ≥ 0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40 / 53

Implementation in Gurobi
params = {

"Chicken" : { "price": 1.80, "protein": 24.0, "sugar": 0.0, "..." : "..." },
"Banana" : { "price": 0.30, "protein": 1.3, "sugar": 14.0, "..." : "..." },
"Yogurt" : { "price": 0.90, "protein": 5.9, "sugar": 7.9, "..." : "..." },
"Beans" : { "price": 1.10, "protein": 8.0, "sugar": 1.0, "..." : "..." },
...

}
foods = list(params.keys())

Variables: x[food]
x = m.addVars(foods, lb=0.0, name="servings")

Objective: Minimize Cost
obj_expr = 0
for food in foods:

obj_expr += params[food]["price"] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)

Constraints (Example: Protein & Sugar)
const_protein = m.addConstr(

gp.quicksum(params[fd]["protein"] * x[fd] for fd in foods) >= 100, "min_protein"
)

const_sugar = m.addConstr(gp.quicksum(params[food]["sugar"] * x[i] for i in foods) <= 50, "max_sugar")

... rest of the requirements ...
m.optimize()

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 41 / 53

Implementation in Gurobi
params = {

"Chicken" : { "price": 1.80, "protein": 24.0, "sugar": 0.0, "..." : "..." },
"Banana" : { "price": 0.30, "protein": 1.3, "sugar": 14.0, "..." : "..." },
"Yogurt" : { "price": 0.90, "protein": 5.9, "sugar": 7.9, "..." : "..." },
"Beans" : { "price": 1.10, "protein": 8.0, "sugar": 1.0, "..." : "..." },
...

}
foods = list(params.keys())

Variables: x[food]
x = m.addVars(foods, lb=0.0, name="servings")

Objective: Minimize Cost
obj_expr = 0
for food in foods:

obj_expr += params[food]["price"] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)

Constraints (Example: Protein & Sugar)
const_protein = m.addConstr(

gp.quicksum(params[fd]["protein"] * x[fd] for fd in foods) >= 100, "min_protein"
)

const_sugar = m.addConstr(gp.quicksum(params[food]["sugar"] * x[i] for i in foods) <= 50, "max_sugar")

... rest of the requirements ...
m.optimize()

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 41 / 53

Implementation in Gurobi
params = {

"Chicken" : { "price": 1.80, "protein": 24.0, "sugar": 0.0, "..." : "..." },
"Banana" : { "price": 0.30, "protein": 1.3, "sugar": 14.0, "..." : "..." },
"Yogurt" : { "price": 0.90, "protein": 5.9, "sugar": 7.9, "..." : "..." },
"Beans" : { "price": 1.10, "protein": 8.0, "sugar": 1.0, "..." : "..." },
...

}
foods = list(params.keys())

Variables: x[food]
x = m.addVars(foods, lb=0.0, name="servings")

Objective: Minimize Cost
obj_expr = 0
for food in foods:

obj_expr += params[food]["price"] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)

Constraints (Example: Protein & Sugar)
const_protein = m.addConstr(

gp.quicksum(params[fd]["protein"] * x[fd] for fd in foods) >= 100, "min_protein"
)

const_sugar = m.addConstr(gp.quicksum(params[food]["sugar"] * x[i] for i in foods) <= 50, "max_sugar")

... rest of the requirements ...
m.optimize()

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 41 / 53

Implementation in Gurobi
params = {

"Chicken" : { "price": 1.80, "protein": 24.0, "sugar": 0.0, "..." : "..." },
"Banana" : { "price": 0.30, "protein": 1.3, "sugar": 14.0, "..." : "..." },
"Yogurt" : { "price": 0.90, "protein": 5.9, "sugar": 7.9, "..." : "..." },
"Beans" : { "price": 1.10, "protein": 8.0, "sugar": 1.0, "..." : "..." },
...

}
foods = list(params.keys())

Variables: x[food]
x = m.addVars(foods, lb=0.0, name="servings")

Objective: Minimize Cost
obj_expr = 0
for food in foods:

obj_expr += params[food]["price"] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)

Constraints (Example: Protein & Sugar)
const_protein = m.addConstr(

gp.quicksum(params[fd]["protein"] * x[fd] for fd in foods) >= 100, "min_protein"
)

const_sugar = m.addConstr(gp.quicksum(params[food]["sugar"] * x[i] for i in foods) <= 50, "max_sugar")

... rest of the requirements ...
m.optimize()

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 41 / 53

Implementation in Gurobi
params = {

"Chicken" : { "price": 1.80, "protein": 24.0, "sugar": 0.0, "..." : "..." },
"Banana" : { "price": 0.30, "protein": 1.3, "sugar": 14.0, "..." : "..." },
"Yogurt" : { "price": 0.90, "protein": 5.9, "sugar": 7.9, "..." : "..." },
"Beans" : { "price": 1.10, "protein": 8.0, "sugar": 1.0, "..." : "..." },
...

}
foods = list(params.keys())

Variables: x[food]
x = m.addVars(foods, lb=0.0, name="servings")

Objective: Minimize Cost
obj_expr = 0
for food in foods:

obj_expr += params[food]["price"] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)

Constraints (Example: Protein & Sugar)
const_protein = m.addConstr(

gp.quicksum(params[fd]["protein"] * x[fd] for fd in foods) >= 100, "min_protein"
)

const_sugar = m.addConstr(gp.quicksum(params[food]["sugar"] * x[i] for i in foods) <= 50, "max_sugar")

... rest of the requirements ...
m.optimize()

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 41 / 53

Implementation in Gurobi
params = {

"Chicken" : { "price": 1.80, "protein": 24.0, "sugar": 0.0, "..." : "..." },
"Banana" : { "price": 0.30, "protein": 1.3, "sugar": 14.0, "..." : "..." },
"Yogurt" : { "price": 0.90, "protein": 5.9, "sugar": 7.9, "..." : "..." },
"Beans" : { "price": 1.10, "protein": 8.0, "sugar": 1.0, "..." : "..." },
...

}
foods = list(params.keys())

Variables: x[food]
x = m.addVars(foods, lb=0.0, name="servings")

Objective: Minimize Cost
obj_expr = 0
for food in foods:

obj_expr += params[food]["price"] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)

Constraints (Example: Protein & Sugar)
const_protein = m.addConstr(

gp.quicksum(params[fd]["protein"] * x[fd] for fd in foods) >= 100, "min_protein"
)

const_sugar = m.addConstr(gp.quicksum(params[food]["sugar"] * x[i] for i in foods) <= 50, "max_sugar")

... rest of the requirements ...
m.optimize()

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 41 / 53

1 Course Logistics
Differences from CS374 and CS473
Content and Types of Projects in Class
Prerequisites
Grading
LLM Usage Policy

2 History of Linear Programming

3 Linear Programming: The Basics

4 The Engineer’s Diet Dilemma

5 Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 42 / 53

Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

m.Status: Did it work?
(2=Opt, 3=Infeas, 5=Unbdd)

m.ObjVal: The total profit/cost (Z).

Variable Attributes:
var.X: The optimal value
(x1 = 6.66).
var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).

Constraint Attributes:
constr.Slack: Difference
between LHS and RHS.
constr.Pi (π): Shadow Price.
“If I had 1 more unit of Metal,
how much more profit would I
make?”. More on this next
week!

Warning
Attributes like .X and .Pi are only
available if m.Status == 2 (Optimal).
Always check status first!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43 / 53

Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

m.Status: Did it work?
(2=Opt, 3=Infeas, 5=Unbdd)
m.ObjVal: The total profit/cost (Z).

Variable Attributes:
var.X: The optimal value
(x1 = 6.66).
var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).

Constraint Attributes:
constr.Slack: Difference
between LHS and RHS.
constr.Pi (π): Shadow Price.
“If I had 1 more unit of Metal,
how much more profit would I
make?”. More on this next
week!

Warning
Attributes like .X and .Pi are only
available if m.Status == 2 (Optimal).
Always check status first!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43 / 53

Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

m.Status: Did it work?
(2=Opt, 3=Infeas, 5=Unbdd)
m.ObjVal: The total profit/cost (Z).

Variable Attributes:
var.X: The optimal value
(x1 = 6.66).

var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).

Constraint Attributes:
constr.Slack: Difference
between LHS and RHS.
constr.Pi (π): Shadow Price.
“If I had 1 more unit of Metal,
how much more profit would I
make?”. More on this next
week!

Warning
Attributes like .X and .Pi are only
available if m.Status == 2 (Optimal).
Always check status first!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43 / 53

Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

m.Status: Did it work?
(2=Opt, 3=Infeas, 5=Unbdd)
m.ObjVal: The total profit/cost (Z).

Variable Attributes:
var.X: The optimal value
(x1 = 6.66).
var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).

Constraint Attributes:
constr.Slack: Difference
between LHS and RHS.
constr.Pi (π): Shadow Price.
“If I had 1 more unit of Metal,
how much more profit would I
make?”. More on this next
week!

Warning
Attributes like .X and .Pi are only
available if m.Status == 2 (Optimal).
Always check status first!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43 / 53

Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

m.Status: Did it work?
(2=Opt, 3=Infeas, 5=Unbdd)
m.ObjVal: The total profit/cost (Z).

Variable Attributes:
var.X: The optimal value
(x1 = 6.66).
var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).

Constraint Attributes:
constr.Slack: Difference
between LHS and RHS.

constr.Pi (π): Shadow Price.
“If I had 1 more unit of Metal,
how much more profit would I
make?”. More on this next
week!

Warning
Attributes like .X and .Pi are only
available if m.Status == 2 (Optimal).
Always check status first!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43 / 53

Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

m.Status: Did it work?
(2=Opt, 3=Infeas, 5=Unbdd)
m.ObjVal: The total profit/cost (Z).

Variable Attributes:
var.X: The optimal value
(x1 = 6.66).
var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).

Constraint Attributes:
constr.Slack: Difference
between LHS and RHS.
constr.Pi (π): Shadow Price.
“If I had 1 more unit of Metal,
how much more profit would I
make?”. More on this next
week!

Warning
Attributes like .X and .Pi are only
available if m.Status == 2 (Optimal).
Always check status first!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43 / 53

Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

m.Status: Did it work?
(2=Opt, 3=Infeas, 5=Unbdd)
m.ObjVal: The total profit/cost (Z).

Variable Attributes:
var.X: The optimal value
(x1 = 6.66).
var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).

Constraint Attributes:
constr.Slack: Difference
between LHS and RHS.
constr.Pi (π): Shadow Price.
“If I had 1 more unit of Metal,
how much more profit would I
make?”. More on this next
week!

Warning
Attributes like .X and .Pi are only
available if m.Status == 2 (Optimal).
Always check status first!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43 / 53

Infeasibility Diagnosis

import gurobipy as gp
import gurobipy

m = gp.Model("Infeasible")
x = m.addVar(name="x")
m.setObjective(-1*x, gp.GRB.MAXIMIZE)
m.addConstr(x>=3)
m.addConstr(x<=2)
m.optimize()
print("Optimize status:", m.Status)

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (mac64[arm]
- Darwin 23.1.0 23B2073)

CPU model: Apple M3 Max
Thread count: 14 physical cores, 14 logical processors, using up to 14 threads

Optimize a model with 2 rows, 1 columns and 2 nonzeros
Model fingerprint: 0xf5b06d2b
Coefficient statistics:
Matrix range [1e+00, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 3e+00]

Presolve time: 0.00s

Solved in 0 iterations and 0.00 seconds (0.00 work units)
Infeasible model
Optimize status: 3

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 44 / 53

Infeasibility Diagnosis

import gurobipy as gp
import gurobipy

m = gp.Model("Infeasible")
x = m.addVar(name="x")
m.setObjective(-1*x, gp.GRB.MAXIMIZE)
m.addConstr(x>=3)
m.addConstr(x<=2)
m.optimize()
print("Optimize status:", m.Status)

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (mac64[arm]
- Darwin 23.1.0 23B2073)

CPU model: Apple M3 Max
Thread count: 14 physical cores, 14 logical processors, using up to 14 threads

Optimize a model with 2 rows, 1 columns and 2 nonzeros
Model fingerprint: 0xf5b06d2b
Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [2e+00, 3e+00]

Presolve time: 0.00s

Solved in 0 iterations and 0.00 seconds (0.00 work units)
Infeasible model
Optimize status: 3

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 44 / 53

What about Larger Models?

import gurobipy as gp

m = gp.Model("TrickyInfeasible")

Variables
x = m.addVar(lb=-0, ub=8, name="x")
y = m.addVar(lb=-0, ub=8, name="y")

Arbitrary bounded objective
m.setObjective(x + y, gp.GRB.MINIMIZE)

#Constraints
m.addConstr(2*x + y <= 4, name="c1_budget1")
m.addConstr(x + 2*y <= 4, name="c2_budget2")
m.addConstr(x + y >= 5, name="c3_demand")
m.addConstr(x <= 8, name="c4_x_cap")
m.addConstr(y <= 8, name="c5_y_cap")

m.optimize()
print("Optimize status:", m.Status)

Optimize a model with 5 rows, 2 columns and 8 nonzeros
Model fingerprint: 0x00fc1d77
Coefficient statistics:
Matrix range [1e+00, 2e+00]
Objective range [1e+00, 1e+00]
Bounds range [8e+00, 8e+00]
RHS range [4e+00, 8e+00]

Presolve removed 2 rows and 0 columns
Presolve time: 0.01s

Solved in 0 iterations and 0.01 seconds (0.00 work units)
Infeasible model
Optimize status: 3

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 45 / 53

What about Larger Models?

import gurobipy as gp

m = gp.Model("TrickyInfeasible")

Variables
x = m.addVar(lb=-0, ub=8, name="x")
y = m.addVar(lb=-0, ub=8, name="y")

Arbitrary bounded objective
m.setObjective(x + y, gp.GRB.MINIMIZE)

#Constraints
m.addConstr(2*x + y <= 4, name="c1_budget1")
m.addConstr(x + 2*y <= 4, name="c2_budget2")
m.addConstr(x + y >= 5, name="c3_demand")
m.addConstr(x <= 8, name="c4_x_cap")
m.addConstr(y <= 8, name="c5_y_cap")

m.optimize()
print("Optimize status:", m.Status)

Optimize a model with 5 rows, 2 columns and 8 nonzeros
Model fingerprint: 0x00fc1d77
Coefficient statistics:
Matrix range [1e+00, 2e+00]
Objective range [1e+00, 1e+00]
Bounds range [8e+00, 8e+00]
RHS range [4e+00, 8e+00]

Presolve removed 2 rows and 0 columns
Presolve time: 0.01s

Solved in 0 iterations and 0.01 seconds (0.00 work units)
Infeasible model
Optimize status: 3

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 45 / 53

What about Larger Models?

import gurobipy as gp

m = gp.Model("TrickyInfeasible")

Variables
x = m.addVar(lb=-0, ub=8, name="x")
y = m.addVar(lb=-0, ub=8, name="y")

Arbitrary bounded objective
m.setObjective(x + y, gp.GRB.MINIMIZE)

#Constraints
m.addConstr(2*x + y <= 4, name="c1_budget1")
m.addConstr(x + 2*y <= 4, name="c2_budget2")
m.addConstr(x + y >= 5, name="c3_demand")
m.addConstr(x <= 8, name="c4_x_cap")
m.addConstr(y <= 8, name="c5_y_cap")

m.optimize()
print("Optimize status:", m.Status)

Optimize a model with 5 rows, 2 columns and 8 nonzeros
Model fingerprint: 0x00fc1d77
Coefficient statistics:
Matrix range [1e+00, 2e+00]
Objective range [1e+00, 1e+00]
Bounds range [8e+00, 8e+00]
RHS range [4e+00, 8e+00]

Presolve removed 2 rows and 0 columns
Presolve time: 0.01s

Solved in 0 iterations and 0.01 seconds (0.00 work units)
Infeasible model
Optimize status: 3

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 45 / 53

What about Larger Models?

import gurobipy as gp

m = gp.Model("TrickyInfeasible")

Variables
x = m.addVar(lb=-0, ub=8, name="x")
y = m.addVar(lb=-0, ub=8, name="y")

Arbitrary bounded objective
m.setObjective(x + y, gp.GRB.MINIMIZE)

#Constraints
m.addConstr(2*x + y <= 4, name="c1_budget1")
m.addConstr(x + 2*y <= 4, name="c2_budget2")
m.addConstr(x + y >= 5, name="c3_demand")
m.addConstr(x <= 8, name="c4_x_cap")
m.addConstr(y <= 8, name="c5_y_cap")

m.optimize()
print("Optimize status:", m.Status)

Optimize a model with 5 rows, 2 columns and 8 nonzeros
Model fingerprint: 0x00fc1d77
Coefficient statistics:
Matrix range [1e+00, 2e+00]
Objective range [1e+00, 1e+00]
Bounds range [8e+00, 8e+00]
RHS range [4e+00, 8e+00]

Presolve removed 2 rows and 0 columns
Presolve time: 0.01s

Solved in 0 iterations and 0.01 seconds (0.00 work units)
Infeasible model
Optimize status: 3

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 45 / 53

What about Larger Models?

import gurobipy as gp

m = gp.Model("TrickyInfeasible")

Variables
x = m.addVar(lb=-0, ub=8, name="x")
y = m.addVar(lb=-0, ub=8, name="y")

Arbitrary bounded objective
m.setObjective(x + y, gp.GRB.MINIMIZE)

#Constraints
m.addConstr(2*x + y <= 4, name="c1_budget1")
m.addConstr(x + 2*y <= 4, name="c2_budget2")
m.addConstr(x + y >= 5, name="c3_demand")
m.addConstr(x <= 8, name="c4_x_cap")
m.addConstr(y <= 8, name="c5_y_cap")

m.optimize()
print("Optimize status:", m.Status)

Optimize a model with 5 rows, 2 columns and 8 nonzeros
Model fingerprint: 0x00fc1d77
Coefficient statistics:

Matrix range [1e+00, 2e+00]
Objective range [1e+00, 1e+00]
Bounds range [8e+00, 8e+00]
RHS range [4e+00, 8e+00]

Presolve removed 2 rows and 0 columns
Presolve time: 0.01s

Solved in 0 iterations and 0.01 seconds (0.00 work units)
Infeasible model
Optimize status: 3

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 45 / 53

Irreducible Infeasible Subsystem (IIS)

What is an IIS?
When a model is infeasible, the full set of constraints cannot all be satisfied
simultaneously.

An IIS is a minimal subset of constraints and bounds that is still infeasible.
“Minimal” = removing any constraint from that subset makes it feasible again.
IISs help pinpoint the true source of infeasibility in large models.

Good News
Gurobi can compute an IIS for you automatically!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 46 / 53

Irreducible Infeasible Subsystem (IIS)

What is an IIS?
When a model is infeasible, the full set of constraints cannot all be satisfied
simultaneously.
An IIS is a minimal subset of constraints and bounds that is still infeasible.

“Minimal” = removing any constraint from that subset makes it feasible again.
IISs help pinpoint the true source of infeasibility in large models.

Good News
Gurobi can compute an IIS for you automatically!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 46 / 53

Irreducible Infeasible Subsystem (IIS)

What is an IIS?
When a model is infeasible, the full set of constraints cannot all be satisfied
simultaneously.
An IIS is a minimal subset of constraints and bounds that is still infeasible.
“Minimal” = removing any constraint from that subset makes it feasible again.

IISs help pinpoint the true source of infeasibility in large models.

Good News
Gurobi can compute an IIS for you automatically!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 46 / 53

Irreducible Infeasible Subsystem (IIS)

What is an IIS?
When a model is infeasible, the full set of constraints cannot all be satisfied
simultaneously.
An IIS is a minimal subset of constraints and bounds that is still infeasible.
“Minimal” = removing any constraint from that subset makes it feasible again.
IISs help pinpoint the true source of infeasibility in large models.

Good News
Gurobi can compute an IIS for you automatically!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 46 / 53

Computing an IIS in Gurobi

If the model is infeasible, we can ask Gurobi to identify the conflicting constraints.

if m.Status == GRB.INFEASIBLE:
print("\nModel is infeasible; computing IIS...")
m.computeIIS()

print("Constraints in the IIS:")
for c in m.getConstrs():

if c.IISConstr: # True if part of the IIS
print(f" {c.ConstrName}")

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 47 / 53

Computing an IIS in Gurobi

If the model is infeasible, we can ask Gurobi to identify the conflicting constraints.
if m.Status == GRB.INFEASIBLE:

print("\nModel is infeasible; computing IIS...")
m.computeIIS()

print("Constraints in the IIS:")
for c in m.getConstrs():

if c.IISConstr: # True if part of the IIS
print(f" {c.ConstrName}")

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 47 / 53

Example IIS Output
Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00 2.500000e+00 0.000000e+00 0s

IIS computed: 3 constraints and 0 bounds
IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:
c1_budget1
c2_budget2
c3_demand

Remember, these constraints correspond to 2x + y ≤ 4, x + 2y ≤ 4, and
x + y ≥ 5. Adding the first 2 inequalities contradicts the third.
These are the minimal conflicting constraints.
Removing any one of them would make the model feasible.
Great for isolating modeling mistakes in large LPs/MIPs.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 48 / 53

Example IIS Output
Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00 2.500000e+00 0.000000e+00 0s

IIS computed: 3 constraints and 0 bounds
IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:
c1_budget1
c2_budget2
c3_demand

Remember, these constraints correspond to 2x + y ≤ 4, x + 2y ≤ 4, and
x + y ≥ 5. Adding the first 2 inequalities contradicts the third.

These are the minimal conflicting constraints.
Removing any one of them would make the model feasible.
Great for isolating modeling mistakes in large LPs/MIPs.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 48 / 53

Example IIS Output
Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00 2.500000e+00 0.000000e+00 0s

IIS computed: 3 constraints and 0 bounds
IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:
c1_budget1
c2_budget2
c3_demand

Remember, these constraints correspond to 2x + y ≤ 4, x + 2y ≤ 4, and
x + y ≥ 5. Adding the first 2 inequalities contradicts the third.
These are the minimal conflicting constraints.

Removing any one of them would make the model feasible.
Great for isolating modeling mistakes in large LPs/MIPs.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 48 / 53

Example IIS Output
Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00 2.500000e+00 0.000000e+00 0s

IIS computed: 3 constraints and 0 bounds
IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:
c1_budget1
c2_budget2
c3_demand

Remember, these constraints correspond to 2x + y ≤ 4, x + 2y ≤ 4, and
x + y ≥ 5. Adding the first 2 inequalities contradicts the third.
These are the minimal conflicting constraints.
Removing any one of them would make the model feasible.

Great for isolating modeling mistakes in large LPs/MIPs.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 48 / 53

Example IIS Output
Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00 2.500000e+00 0.000000e+00 0s

IIS computed: 3 constraints and 0 bounds
IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:
c1_budget1
c2_budget2
c3_demand

Remember, these constraints correspond to 2x + y ≤ 4, x + 2y ≤ 4, and
x + y ≥ 5. Adding the first 2 inequalities contradicts the third.
These are the minimal conflicting constraints.
Removing any one of them would make the model feasible.
Great for isolating modeling mistakes in large LPs/MIPs.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 48 / 53

Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.

Gurobi not only detects unboundedness, it returns an unbounded ray.
An unbounded ray is a vector d such that:

x + λd is feasible for all λ > 0

and the objective coefficient cT d > 0 (for maximization).
Gurobi provides this via the attribute:

var.UnbdRay

Nonzero components of the ray indicate which variables “run off to infinity.”

Interpretation
The unbounded ray shows how the LP escapes to infinity.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 49 / 53

Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.
Gurobi not only detects unboundedness, it returns an unbounded ray.

An unbounded ray is a vector d such that:

x + λd is feasible for all λ > 0

and the objective coefficient cT d > 0 (for maximization).

Gurobi provides this via the attribute:

var.UnbdRay

Nonzero components of the ray indicate which variables “run off to infinity.”

Interpretation
The unbounded ray shows how the LP escapes to infinity.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 49 / 53

Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.
Gurobi not only detects unboundedness, it returns an unbounded ray.

An unbounded ray is a vector d such that:

x + λd is feasible for all λ > 0

and the objective coefficient cT d > 0 (for maximization).
Gurobi provides this via the attribute:

var.UnbdRay

Nonzero components of the ray indicate which variables “run off to infinity.”

Interpretation
The unbounded ray shows how the LP escapes to infinity.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 49 / 53

Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.
Gurobi not only detects unboundedness, it returns an unbounded ray.

An unbounded ray is a vector d such that:

x + λd is feasible for all λ > 0

and the objective coefficient cT d > 0 (for maximization).
Gurobi provides this via the attribute:

var.UnbdRay

Nonzero components of the ray indicate which variables “run off to infinity.”

Interpretation
The unbounded ray shows how the LP escapes to infinity.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 49 / 53

Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.
Gurobi not only detects unboundedness, it returns an unbounded ray.

An unbounded ray is a vector d such that:

x + λd is feasible for all λ > 0

and the objective coefficient cT d > 0 (for maximization).
Gurobi provides this via the attribute:

var.UnbdRay

Nonzero components of the ray indicate which variables “run off to infinity.”

Interpretation
The unbounded ray shows how the LP escapes to infinity.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 49 / 53

Example of an Unbounded LP?

Example (Maximization):

max x + y

s.t. x − y ≥ 1

x , y ≥ 0

Feasible region goes to ∞.
Objective increases without
bound.
No vertex optimum exists.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 50 / 53

Example of an Unbounded LP?

Example (Maximization):

max x + y

s.t. x − y ≥ 1

x , y ≥ 0

Feasible region goes to ∞.
Objective increases without
bound.
No vertex optimum exists.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 50 / 53

Geometry of the Unbounded Ray

x

y

x − y = 1

(1, 0)

ray (1, 1)

Feasible region:

x − y ≥ 1, x ≥ 0, y ≥ 0.

From the feasible point (1,0) we
can move along (x , y) =
(1, 0) + λ(1, 1) = (1 + λ, λ), λ ≥ 0.

The objective x + y grows without
bound:

1 + 2λ → ∞.

Gurobi’s UnbdRay returns this
direction.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 51 / 53

Geometry of the Unbounded Ray

x

y

x − y = 1

(1, 0)

ray (1, 1)

Feasible region:

x − y ≥ 1, x ≥ 0, y ≥ 0.

From the feasible point (1,0) we
can move along (x , y) =
(1, 0) + λ(1, 1) = (1 + λ, λ), λ ≥ 0.
The objective x + y grows without
bound:

1 + 2λ → ∞.

Gurobi’s UnbdRay returns this
direction.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 51 / 53

Geometry of the Unbounded Ray

x

y

x − y = 1

(1, 0)

ray (1, 1)

Feasible region:

x − y ≥ 1, x ≥ 0, y ≥ 0.

From the feasible point (1,0) we
can move along (x , y) =
(1, 0) + λ(1, 1) = (1 + λ, λ), λ ≥ 0.
The objective x + y grows without
bound:

1 + 2λ → ∞.

Gurobi’s UnbdRay returns this
direction.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 51 / 53

Gurobi Example: Unbounded Model + Ray

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("Unbounded")
x = m.addVar(lb=0, name="x")
y = m.addVar(lb=0, name="y")
m.setObjective(x + y, GRB.MAXIMIZE)
m.addConstr(x - y >= 1, name="c1_skew")
KEY: ask Gurobi to compute ray info
m.setParam(GRB.Param.InfUnbdInfo, 1)
m.optimize()

print("Status:", m.Status)
if m.Status == GRB.UNBOUNDED:

print("\nUnbounded Ray:")
for v in m.getVars():

print(f"{v.VarName}: {v.UnbdRay}")

Status: 5

Unbounded Ray:
x: 1.0
y: 1.0

The ray (1, 1) means both x and y
can increase indefinitely.
The constraint x − y ≥ 1 stays
satisfied for all
(x , y) = (1, 0) + λ(1, 1).
Objective grows as x + y → +∞.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 52 / 53

Gurobi Example: Unbounded Model + Ray

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("Unbounded")
x = m.addVar(lb=0, name="x")
y = m.addVar(lb=0, name="y")
m.setObjective(x + y, GRB.MAXIMIZE)
m.addConstr(x - y >= 1, name="c1_skew")
KEY: ask Gurobi to compute ray info
m.setParam(GRB.Param.InfUnbdInfo, 1)
m.optimize()

print("Status:", m.Status)
if m.Status == GRB.UNBOUNDED:

print("\nUnbounded Ray:")
for v in m.getVars():

print(f"{v.VarName}: {v.UnbdRay}")

Status: 5

Unbounded Ray:
x: 1.0
y: 1.0

The ray (1, 1) means both x and y
can increase indefinitely.
The constraint x − y ≥ 1 stays
satisfied for all
(x , y) = (1, 0) + λ(1, 1).
Objective grows as x + y → +∞.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 52 / 53

Gurobi Example: Unbounded Model + Ray

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("Unbounded")
x = m.addVar(lb=0, name="x")
y = m.addVar(lb=0, name="y")
m.setObjective(x + y, GRB.MAXIMIZE)
m.addConstr(x - y >= 1, name="c1_skew")
KEY: ask Gurobi to compute ray info
m.setParam(GRB.Param.InfUnbdInfo, 1)
m.optimize()

print("Status:", m.Status)
if m.Status == GRB.UNBOUNDED:

print("\nUnbounded Ray:")
for v in m.getVars():

print(f"{v.VarName}: {v.UnbdRay}")

Status: 5

Unbounded Ray:
x: 1.0
y: 1.0

The ray (1, 1) means both x and y
can increase indefinitely.
The constraint x − y ≥ 1 stays
satisfied for all
(x , y) = (1, 0) + λ(1, 1).
Objective grows as x + y → +∞.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 52 / 53

Gurobi Example: Unbounded Model + Ray

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("Unbounded")
x = m.addVar(lb=0, name="x")
y = m.addVar(lb=0, name="y")
m.setObjective(x + y, GRB.MAXIMIZE)
m.addConstr(x - y >= 1, name="c1_skew")
KEY: ask Gurobi to compute ray info
m.setParam(GRB.Param.InfUnbdInfo, 1)
m.optimize()

print("Status:", m.Status)
if m.Status == GRB.UNBOUNDED:

print("\nUnbounded Ray:")
for v in m.getVars():

print(f"{v.VarName}: {v.UnbdRay}")

Status: 5

Unbounded Ray:
x: 1.0
y: 1.0

The ray (1, 1) means both x and y
can increase indefinitely.
The constraint x − y ≥ 1 stays
satisfied for all
(x , y) = (1, 0) + λ(1, 1).
Objective grows as x + y → +∞.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 52 / 53

TODOs after Lecture.

Install Gurobi: Get your academic license working.
Code and Solve The Diet Problem in HW1.
Use Tools like m.computeIIS() and var.UnbdRay to find the conflict in toy
infeasible models and unbounded models.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 53 / 53

	Course Logistics
	Differences from CS374 and CS473
	Content and Types of Projects in Class
	Prerequisites
	Grading
	LLM Usage Policy

	History of Linear Programming
	Linear Programming: The Basics
	The Engineer's Diet Dilemma
	Interpreting and Debugging Gurobi Output

