
CS498 Homework1

November 21, 2025

Gradescope Entry Code: PK5XK2

1 Problem 1 — Matrix-Form LPs & Programmatic Solvers
This problem is a warm-up to ensure you are comfortable (1) writing linear programs in matrix
form, and (2) building simple LP solvers programmatically using Gurobi. You will complete
both a written component and a coding component. The coding portion will be autograded
on Gradescope, and your code will be tested on multiple LPs, not only the example shown
in the setup.

1.1 Setup Example (for the Written Part Only)
Consider the linear program:

max 3𝑥 + 2𝑦
s.t. 𝑥 + 𝑦 ≤ 4

2𝑥 + 𝑦 ≤ 5
𝑥 ≥ 0, 𝑦 ≥ 0.

This example is used only for the written portion.
Your code must handle general LPs of the form:

max 𝑐⊤𝑥 s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0.

1.2 Task 1 (Written): Matrix Form [30 Points]
Write the example LP above in matrix form 𝐴𝑥 ≤ 𝑏 and vector 𝑐, where:

• 𝑥 = [𝑥
𝑦],

• 𝐴 is an 𝑚 × 2 matrix,
• 𝑏 is length 𝑚,
• 𝑐 is length 2.

Next, plot the feasible region, a few objective function level sets, and the visually point out the
optimal solution of the LP.

Upload this to Problem 0 Written on Gradescope.

1

1.3 Programming Tasks (Autograded)
Submit a file named hw1_p1_lp.py containing the three functions defined below.
Your code will be tested on several different LPs; do not hard-code the example.

Import NumPy and Gurobi at the top of your file.

1.4 Function 1 — Build a Gurobi Model [30 Points]
def build_model(A, b, c):

"""
Input:

A: (m × n) NumPy array
b: length-m NumPy array
c: length-n NumPy array

Output:
A Gurobi model for the LP:

maximize c^T x
subject to A x <= b

x >= 0

where x has n nonnegative decision variables.
"""

1.5 Function 2 — Solve an LP Using Gurobi [10 Points]
def solve_with_gurobi(A, b, c):

"""
Input:

A: (m × n) NumPy array
b: length-m NumPy array
c: length-n NumPy array

Builds the model using build_model(A, b, c),
solves it with Gurobi, and returns (x_opt, obj_val):

x_opt: optimal solution vector (NumPy array length n)
obj_val: optimal objective value (float)

"""

This function must: - call your build_model function, - optimize the model, - extract the solution
and objective value.

2

1.6 Function 3 — Enumerate 2D Polytope Vertices [30 Points]
def enumerate_vertices(A, b, c):

"""
Enumerates all vertices (extreme points) of the 2D polytope

P = { x in R^2 : A x <= b, x>=0 },

and returns:

vertices: list of NumPy arrays (each of length 2)
best_x: vertex achieving max c^T x subject to A x <= b and x>=0 from vertices
best_obj: the corresponding objective value of best_x

Assumptions:
- A is an (m × 2) matrix.
- Vertices are finite.

This must work for *arbitrary* 2D LPs, not just the example.
"""

You may use any correct geometric method (e.g., intersecting constraint pairs + feasibility checks).
Consider the python function itertools.combinations.

1.7 Important Notes
1.7.1 Autograder

Your code will be tested on multiple randomly generated LPs of various sizes and shapes.

1.7.2 Requirements

• Submit hw1_p1_lp.py to Homework 1 Problem 1 on Gradescope.
• Do not submit additional files.
• Your functions must have exactly the names and signatures shown above.

3

2 Problem 2 — Primal and Dual: Two Sides of the Same Coin
Goal: Write the dual of a simple LP manually, solve both, and verify strong duality numerically.

2.1 Context
In class we saw that every LP in standard form

max 𝑐⊤𝑥 s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0

has a dual LP

min 𝑏⊤𝑦 s.t. 𝐴⊤𝑦 ≥ 𝑐, 𝑦 ≥ 0,

and that both share the same optimal value when both are feasible.

2.2 Tasks
1. Consider:

max 3𝑥1 + 5𝑥2 s.t.
⎧{
⎨{⎩

𝑥1 + 2𝑥2 ≤ 8
2𝑥1 + 𝑥2 ≤ 8
𝑥1, 𝑥2 ≥ 0

2. Derive its dual manually.

3. Solve both LPs in Gurobi (Or Manually!).

• Build two models (model_primal, model_dual).
• Compare optimal values (ObjVal).

4. Interpret the result.

• Verify Strong Duality (i.e. they’re equal).

You should submit the following to Homework 1 Problem 2 on Gradescope: the primal optimal
solution (𝑥∗

1, 𝑥∗
2), the corresponding primal optimal objective value, the dual optimal solution, the

dual optimal objective value, and the code used to obtain these results (or the plots if you did it
geometrically).

4

3 Problem 3: Visualizing Linear Programs in 2D
Before you trust solvers, you should see what they’re doing. In this problem, you’ll plot
a simple 2-variable linear program, guess the optimal solution, and then ask gurobipy
to confirm whether your intuition was right.

3.1 Scenario
Imagine you’re designing a micro-factory that produces two products: Gadgets (x) and Widgets
(y). Each consumes limited resources and generates profit.

You need to decide how many of each to produce under these linear constraints:

𝑥 + 2𝑦 ≤ 8 (Resource A)
3𝑥 + 𝑦 ≤ 9 (Resource B)

𝑥, 𝑦 ≥ 0

and your goal is to maximize the total profit 𝑧 = 3𝑥 + 2𝑦.

3.2 Tasks
1. Plot the feasible region:

• Draw each constraint line in Matplotlib.
• Shade the feasible polygon defined by the inequalities.

2. Add objective lines:

• Draw a few “profit” lines 3𝑥 + 2𝑦 = 𝑐 for different 𝑐 (for example 6, 9, 10, ...).
• Visually slide the line upward and predict where it last touches the feasible region.

3. Visually guess the optimum: estimate (𝑥∗, 𝑦∗) from your plot.

4. Verify with gurobipy:

• Build and solve the LP in Python.
• Print the optimal values and objective.
• Mark the solver’s optimal point on your plot.

5. Reflect:

• Does the solver’s answer match your geometric intuition?
• Which constraints are “tight” at the optimum?

3.3 Deliverable
A plot showing: * The feasible region (shaded polygon) * A few objective lines * The optimal point
from Guroby annotated * Write a sentence or two explaining how the geometry connects to what
Gurobi reports.

You should submit your written answer to Homework 1 Problem 3 on Gradescope.

5

4 Problem 4: The Engineer’s Diet Dilemma (Coding)
You’ve just joined OptiMeal Inc., a startup building the world’s most efficient meal-
planning engine. The finance team insists on cutting costs, while the nutritionists
demand balance.

Your job: use linear programming to design the cheapest daily meal plan that still meets basic
nutritional requirements.

This is a coding-only problem. It will be autograded on Gradescope.

4.1 Dataset and Setup
We’ll work with a small food dataset in a pandas DataFrame.
Each row is a food, each column is a property (price, calories, etc.):

• food_one_serving – name of the food (string)
• price_usd_per_serving – cost of one serving (float)
• calories_kcal
• protein_g
• carbs_g
• sugar_g
• fiber_g
• fat_g
• sodium_mg

Example (the autograder will build something like this for you):

import pandas as pd
from io import StringIO

csv = StringIO("""food_one_serving,price_usd_per_serving,calories_kcal,protein_g,carbs_g,sugar_g,fiber_g,fat_g,sodium_mg
chicken,1.80,128,24,0,0,0,2.7,44
banana,0.30,105,1.3,27,14,3.1,0.4,1
yogurt,0.90,104,5.9,7.9,7.9,0,5.5,70
beans,1.10,120,8,21,1,7,0.5,2
spinach,0.40,7,0.9,1.1,0.1,0.7,0.1,24
almonds,0.70,160,6,6,1,3,14,1
""")

df = pd.read_csv(csv)

Important: In your solution, do not read files from disk.
The autograder will create a DataFrame and pass it into your function.

4.2 Decision Variables
We decide how many servings of each food to eat in a day.

6

Let: - 𝑥𝑖 ≥ 0 = servings of food 𝑖 (continuous, not necessarily integer) - There is one variable per
row of the DataFrame.

You’ll create these as Gurobi decision variables.

4.3 Objective: Minimize Cost
Minimize the total daily cost:

minimize ∑
𝑖

price𝑖 𝑥𝑖.

Use the price_usd_per_serving column.

4.4 Nutritional Constraints
You must enforce:

• Minimums:
– Total calories ≥ calories_min
– Total protein ≥ protein_min
– Total fiber ≥ fiber_min

• Maximums:
– Total sugar ≤ sugar_max
– Total fat ≤ fat_max
– Total sodium ≤ sodium_max

These requirements will be passed as a Python dictionary:

requirements = {
"calories_min": 2000,
"protein_min": 100,
"fiber_min": 50,
"sugar_max": 50,
"fat_max": 120,
"sodium_max": 2300,

}

Again, the exact numbers used in the autograder may differ, but the keys are the same.

4.5 What You Must Implement
Create a file named hw1_p4_diet.py that defines exactly this function:

import pandas as pd
import numpy as np
import gurobipy as gp

7

def solve_diet(df, requirements):
"""
Solve the diet LP:

minimize total cost (USD)
subject to daily nutritional requirements

Inputs

df : pandas.DataFrame

Each row is a food. Must contain the columns:
- "food_one_serving"
- "price_usd_per_serving"
- "calories_kcal"
- "protein_g"
- "fiber_g"
- "sugar_g"
- "fat_g"
- "sodium_mg"

requirements : dict
With keys:
- "calories_min"
- "protein_min"
- "fiber_min"
- "sugar_max"
- "fat_max"
- "sodium_max"

Outputs

servings : np.ndarray, shape (len(df),)

servings[i] is the number of servings of row i in df.

min_cost : float
The minimum total cost (objective value).

"""
TODO: implement
raise NotImplementedError

4.6 Requirements for your implementation
• Use Gurobi (gurobipy) to set up and solve the LP.
• Decision variables: one per food (each row of df), continuous and �0 (you can’t eat a negative

serving).
• Objective: minimize total cost using price_usd_per_serving.
• Constraints:

8

– calories_kcal sum � calories_min
– protein_g sum � protein_min
– fiber_g sum � fiber_min
– sugar_g sum � sugar_max
– fat_g sum � fat_max
– sodium_mg sum � sodium_max

• Return:
– servings: a NumPy array of length len(df)
– min_cost: a float

You may not assume a specific number of foods. Your code should work for any DataFrame with
the required columns.

4.7 Quick Intro: Using pandas for This Problem
You will typically access data like:

n = len(df) # number of foods
prices = df["price_usd_per_serving"].values # NumPy array of length n
calories = df["calories_kcal"].values
protein = df["protein_g"].values
fiber = df["fiber_g"].values
sugar = df["sugar_g"].values
fat = df["fat_g"].values
sodium = df["sodium_mg"].values

You can index rows by integer position:

for i in range(n):
price_i = prices[i]
cals_i = calories[i]
...

The autograder will call only your solve_diet(df, requirements) function. The problem is
worth 100 points (all from the autograder tests).

9

5 Problem 5: The LP Detective
A mysterious optimization has been solved. You’ve found the answer, but not the
question.

You join OptiSolve Forensics, a consulting unit that reverse-engineers optimization problems
from partial clues. Someone claims they solved a linear program, and the resulting point 𝑥∗ = (2, 3)
was “optimal.’ ’ But the objective coefficients were lost.

Your mission: uncover which objectives could make that claim true, or expose their filthy lies to
the light of day!

5.1 Setup
The only surviving file lists the constraints of the primal problem:

𝑥 + 𝑦 ≤ 5 (1)
𝑥 + 3𝑦 ≤ 11 (2)

𝑥 ≥ 0 (3)
𝑦 ≥ 0 (4)

The true objective was of the form max; 𝑐1𝑥 + 𝑐2𝑦 for some unknown vector 𝑐 = (𝑐1, 𝑐2).

5.2 Tasks
1. Feasibility: Verify whether the reported 𝑥∗ = (2, 3) actually satisfies all constraints. If not,

call out the lies!

2. Active-set geometry: Find which constraints are binding (equalities) at the feasible point
𝑥∗. Sketch the feasible region and label the active edges.

3. Objective reconstruction: Derive all objective vectors 𝑐 that would make 𝑥∗ optimal.
(Hint: for a maximization problem with 𝐴𝑥 ≤ 𝑏, the valid 𝑐 lie inside the cone generated by
the active constraint normals.)

4. Hypothesis testing: Choose several candidate 𝑐 vectors, some on the edges of that cone,
some inside it, and resolve the LP using Gurobi. Which ones reproduce 𝑥∗?

5.3 Deliverable
A concise report (and optional plots) showing:

• Identified active constraints
• One or more valid 𝑐 vectors that make 𝑥∗ optimal (plot 𝑐1, 𝑐2 and think of which 𝑐1, 𝑐2 cause

𝑥∗ to be the optimal solution of the LP).
• A description of the set of vectors 𝑐 that would make 𝑥∗ optimal.
• Numerical verification from Gurobi that for some of your 𝑐 vectors, 𝑥∗ is indeed an optimal

vector!
• Brief explanation of geometric intuition

10

6 Problem 6 — LP Escape Room: Diagnose Infeasible or Un-
bounded Models
You’re trapped in OptiLock Labs with only a solver and its status code. Your goal:
identify whether the model is infeasible or unbounded, and show proof.

6.1 Mission
Two short Gurobi models are provided:

1. One infeasible (contradictory constraints)
2. One unbounded (objective can increase forever)

Your task is to:

1. Classify each model as infeasible or unbounded (based on status + logs).
2. For the infeasible model, run computeIIS() and list the constraints/bounds that form

the minimal conflicting set.
3. For the unbounded model, extract the unbounded direction vector using Var.UnbdRay.
4. Explain briefly what went wrong in each model and how to fix it.
5. Show your code in your answer!

6.2 Starter Code
import gurobipy as gp
from gurobipy import GRB

def scenario_1():
m = gp.Model("scenario_1")
m.Params.OutputFlag = 1 # show log
m.Params.InfUnbdInfo = 1 # help produce an unbounded ray for LPs

Variables: x1, x2, x3 >= 0
x1 = m.addVar(lb=0.0, name="x1")
x2 = m.addVar(lb=0.0, name="x2")
x3 = m.addVar(lb=0.0, name="x3")

Objective: maximize 3 x1 + x2
m.setObjective(3 * x1 + x2, GRB.MAXIMIZE)

Constraints
m.addConstr(x1 - x2 <= 5, name="c1")
m.addConstr(2 * x1 + x3 >= 3, name="c2")
m.addConstr(x2 + x3 >= 1, name="c3")

m.optimize()
return m

def scenario_2():
m = gp.Model("scenario_2")

11

m.Params.OutputFlag = 1 # show log
m.Params.InfUnbdInfo = 1 # help produce an unbounded ray for LPs

Variables: x1, x2, x3 >= 0
x1 = m.addVar(lb=0.0, name="x1")
x2 = m.addVar(lb=0.0, name="x2")
x3 = m.addVar(lb=0.0, name="x3")

Dummy objective: minimize 0
m.setObjective(0 * x1 + 0 * x2 + 0 * x3, GRB.MINIMIZE)

Constraints
m.addConstr(x1 + x2 + x3 >= 10, name="demand_total")
m.addConstr(x1 + x2 <= 3, name="cap_xy")
m.addConstr(x2 + x3 <= 3, name="cap_yz")

m.optimize()
return m

6.3 Deliverable
For each scenario:

Item What to include
Status +
Classification

m.Status → INFEASIBLE or UNBOUNDED

Evidence From solver log (e.g., “Unbounded model” or “IIS found”)
Proof • If infeasible → list names from c.IISConstr, v.IISLB, v.IISUB • If

unbounded → print nonzero v.UnbdRay values
Fix idea One line explaining the modeling mistake (missing bound, contradictory

constraint, etc.)

• Use m.Status and constants in gp.GRB (GRB.INFEASIBLE, GRB.UNBOUNDED).

• For IIS:

m.computeIIS()
[c.ConstrName for c in m.getConstrs() if c.IISConstr]

• For UnbdRay:

{v.VarName: v.UnbdRay for v in m.getVars() if abs(v.UnbdRay) > 1e-9}

Deliver a concise write-up (�½ page) with the classifications, supporting evidence (IIS /
UnbdRay), and a one-sentence fix for each case.

12

	Problem 1 — Matrix-Form LPs & Programmatic Solvers
	Setup Example (for the Written Part Only)
	Task 1 (Written): Matrix Form [30 Points]
	Programming Tasks (Autograded)
	Function 1 — Build a Gurobi Model [30 Points]
	Function 2 — Solve an LP Using Gurobi [10 Points]
	Function 3 — Enumerate 2D Polytope Vertices [30 Points]
	Important Notes
	Autograder
	Requirements

	Problem 2 — Primal and Dual: Two Sides of the Same Coin
	Context
	Tasks

	Problem 3: Visualizing Linear Programs in 2D
	Scenario
	Tasks
	Deliverable

	Problem 4: The Engineer's Diet Dilemma (Coding)
	Dataset and Setup
	Decision Variables
	Objective: Minimize Cost
	Nutritional Constraints
	What You Must Implement
	Requirements for your implementation
	Quick Intro: Using pandas for This Problem

	Problem 5: The LP Detective
	Setup
	Tasks
	Deliverable

	Problem 6 — LP Escape Room: Diagnose Infeasible or Unbounded Models
	Mission
	Starter Code
	Deliverable

