
CS498 Homework 2

January 28, 2026

1 Problem 1: Sherali–Adams & Maximum Independent Set
This is a coding-only problem. It will be autograded on Gradescope.

We will:

1. Implement the basic LP relaxation for Maximum Independent Set (MIS) on an arbitrary
graph.

2. Understand why this basic LP can be too weak (gives an over-optimistic objective).
3. Strengthen the LP by adding extra odd-cycle inequalities that make the relaxation much

tighter.
• In the literature, these come from a “lift-and-project” procedure called the Sherali–

Adams hierarchy, but for this problem, you only need to understand them as extra
valid inequalities that improve and strengthens the LP.

1.1 Graph Input: Adjacency Matrix
The autograder will pass a graph to your function as a NumPy adjacency matrix:

• adj is a numpy.ndarray of shape (n, n).
• adj[i, j] = 1 if there is an edge between vertices i and j, otherwise 0.
• The graph is:

– Undirected: adj[i, j] == adj[j, i]
– Simple: adj[i, i] = 0 (no self-loops)

Example helper (you don’t need to write this; the autograder will):

import numpy as np

def make_cycle5():
n = 5
adj = np.zeros((n, n), dtype=int)
edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 0)]
for u, v in edges:

adj[u, v] = 1
adj[v, u] = 1

return adj

1.2 Decision Variables
For a graph with vertices 𝑉 = {0, 1, … , 𝑛 − 1}, we introduce one variable per vertex:

1



• 𝑥𝑖 ∈ [0, 1] for each vertex 𝑖 ∈ 𝑉 .

Interpretation:

• 𝑥𝑖 = 1: we choose vertex 𝑖 (room 𝑖 is in the independent set).
• 𝑥𝑖 = 0: we don’t choose vertex 𝑖.
• Fractional values (like 𝑥𝑖 = 0.4) are allowed in the LP relaxation.

1.3 Part A – The Basic MIS LP Relaxation (for any graph)
The Maximum Independent Set problem asks for the largest set of vertices with no edges inside
the set.

We model a fractional relaxation with this LP:

max ∑
𝑖

𝑥𝑖 s.t. 𝑥𝑖 + 𝑥𝑗 ≤ 1 for each edge (𝑖, 𝑗), 0 ≤ 𝑥𝑖 ≤ 1 for all 𝑖.

Why is this reasonable?

• The constraint 𝑥𝑖 + 𝑥𝑗 ≤ 1 prevents us from simultaneously setting 𝑥𝑖 = 𝑥𝑗 = 1 on an edge,
which would violate independence.

• The bounds 0 ≤ 𝑥𝑖 ≤ 1 ensure the variables are between 0 and 1.

However, this is only a relaxation: it allows fractional solutions that are not valid independent
sets. On some graphs, the LP optimum can be strictly larger than the true maximum independent
set size.

1.4 Part B – Why the Basic LP Can Be Too Weak: The 5-Cycle Example
Consider the 5-cycle 𝐶5: vertices 0, 1, 2, 3, 4 in a ring.

• The true maximum independent set size on 𝐶5 is 2.
• But the basic LP has an optimal solution with all 𝑥𝑖 = 0.5:

– Each edge constraint: 𝑥𝑖 + 𝑥𝑗 = 0.5 + 0.5 = 1, so it is feasible.
– Objective value: ∑𝑖 𝑥𝑖 = 5 ⋅ 0.5 = 2.5.

So the LP says “2.5 rooms”. The relaxation is too optimistic.

1.5 Part C – Strengthening the LP by Adding More Inequalities
One standard way to improve an LP relaxation is to add more valid inequalities:

• An inequality is valid if every true independent set (with 𝑥𝑖 ∈ {0, 1}) satisfies it.
• If an inequality is valid but violated by some fractional LP solution, then adding it will cut

off that bad fractional solution and make the relaxation tighter.

1.5.1 Odd-Cycle Inequality

On the 5-cycle, it is impossible to choose 3 vertices without picking two adjacent ones, so no
independent set can have three vertices in the cycle.

This can be expressed as the inequality:

2



𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≤ 2.
• Every independent set satisfies this (maximum of 2 vertices in a 5-cycle).
• The fractional solution with all 𝑥𝑖 = 0.5 violates it (sum = 2.5).
• If we add this inequality to the LP, the optimum drops from 2.5 down to 2, which matches

the true integral answer.

This is exactly what we mean by strengthening the LP: adding more inequalities that are true
for all 0–1 solutions, but remove some fractional ones.

1.5.2 General Odd-Cycle Inequalities

More generally, for any odd cycle 𝐶 of length |𝐶| in a graph, we can add:

∑
𝑖∈𝐶

𝑥𝑖 ≤ |𝐶| − 1
2 .

Reason:

• In any independent set on an odd cycle of length |𝐶|, you can pick at most |𝐶|−1
2 vertices.

• So this inequality is valid for all 0–1 solutions.
• But it often cuts off fractional solutions of the basic LP.

These inequalities can be derived systematically using a “lift-and-project” method called the
Sherali–Adams hierarchy. For this problem however, you do not need to know the full the-
ory, just think of them as extra constraints that make the LP closer to the true combinatorial
problem.

1.6 Part D – Using NetworkX to Find Odd Cycles
We’d like to automatically find all cycles in the graph and add these odd-cycle inequalities.

We’ll use NetworkX, a Python graph library.

1.6.1 Installing NetworkX (on your machine)

On your own machine, you can install NetworkX with:

pip install networkx

On Gradescope, networkx will already be installed in the autograder environment.

1.6.2 Building a Graph from the Adjacency Matrix

Inside your solution file:

import numpy as np
import networkx as nx

def build_graph_from_adj(adj):
# adj is a numpy array of shape (n, n)

3



G = nx.from_numpy_array(adj) # undirected simple graph
return G

nx.from_numpy_array(adj):

• Creates an undirected NetworkX graph.
• Nodes are labeled 0, 1, ..., n-1.
• An edge (i, j) is added whenever adj[i, j] != 0.

1.6.3 Listing Simple Cycles

NetworkX can produce a cycle basis of the graph. A basis for cycles of a network is a minimal
collection of cycles such that any cycle in the network can be written as a sum of cycles in the
basis.

G = build_graph_from_adj(adj)
cycles = nx.cycle_basis(G)

• cycles is a list of simple cycles.

• Each cycle is a list of vertices (no repeated start/end vertex).

– Example for a 5-cycle: [0, 1, 2, 3, 4].

For each cycle C in cycles:

• If len(C) is odd, we add the linear inequality ∑𝑖∈𝐶 𝑥𝑖 ≤ (|𝐶| − 1)/2.

These are the “strengthening constraints” we want.

1.7 What You Must Implement
Create a file named hw2_p1_sherali_adams.py that defines exactly this function:

import numpy as np
import gurobipy as gp
import networkx as nx

def solve_mis_hierarchy(adj):
"""
Compare the basic MIS LP relaxation and a strengthened LP with
odd-cycle inequalities on an arbitrary graph.

Inputs
------
adj : numpy.ndarray, shape (n, n)

Adjacency matrix of an undirected simple graph.
- adj[i, j] = adj[j, i] in {0, 1}
- adj[i, i] = 0

Outputs
-------
x_basic : np.ndarray, shape (n,)

4



Optimal solution of the basic LP relaxation:
max sum_i x_i
s.t. x_i + x_j <= 1 for each edge (i, j),

0 <= x_i <= 1.

obj_basic : float
Optimal objective value of the basic LP relaxation.

x_sa : np.ndarray, shape (n,)
Optimal solution of the strengthened LP with additional
odd-cycle inequalities:

For every odd cycle C found by networkx.cycle_basis(G):
sum_{i in C} x_i <= (|C| - 1) / 2.

obj_sa : float
Optimal objective value of the strengthened LP.

"""
# TODO: implement
raise NotImplementedError

1.8 Implementation Requirements
You must:

1.8.1 1. Basic LP

Build and solve the basic LP:

• Variables:

– x[i] for i in {0, ..., n-1}, continuous with 0 <= x[i] <= 1.

• Objective:

– Maximize ∑𝑖 𝑥𝑖.

• Edge constraints:

– For each edge (i, j) where adj[i, j] == 1, add the constraint x[i] + x[j] <= 1.

1.8.2 2. Strengthened LP with Odd-Cycle Inequalities

Build and solve a second LP that is identical to the basic LP but with additional cycle constraints.

Return:

return x_basic_vals, obj_basic, x_sa_vals, obj_sa

1.9 What You Should Observe
Run your code (or check Gradescope feedback) on different graphs:

• Triangle 𝐾3:

5



– Basic LP optimum � 1.5 (using 𝑥𝑖 = 0.5).
– Odd-cycle inequality for the triangle ∑ 𝑥𝑖 ≤ 1 forces the optimum down to 1.

• 5-cycle 𝐶5:
– Basic LP optimum � 2.5 (all 𝑥𝑖 = 0.5).
– Odd-cycle inequality for the 5-cycle forces the optimum down to 2, the true MIS size.

• 4-cycle 𝐶4:
– There are no odd cycles, so there are no extra inequalities to add.
– The strengthened LP equals the basic LP; the objective values should match.

In all of these cases, you’re seeing the same phenomenon: by strengthening the LP with
valid inequalities (here, odd-cycle inequalities), you push the LP solution closer to the true
combinatorial answer.

This is the core idea behind hierarchies like Sherali–Adams, they systematically generate families
of such inequalities to tighten relaxations. Can you think of other inequalities that would tighten
MIS for the clique for example? (not for submission)

6



2 Problem 2 — Modelling: The Gridlock Gambit (Coding + Writ-
ten)
You’ve joined TransiLogic AI, a startup using optimization to reduce urban gridlock.
The city’s road network has limited capacity, congestion costs money, and traffic demand
must be met exactly. Your job is to model traffic routing as a linear program,
solve it at scale, and understand which roads are actually valuable.

This problem has two parts:

1. (Coding) Formulate and solve a minimum-cost flow LP using Gurobi.
2. (Conceptual) Use dual values (shadow prices) to analyze what-if scenarios on a small

network.

2.1 Background: What Is a Min-Cost Flow Problem?
A min-cost flow problem models the movement of a commodity (here: vehicles) through a
directed network.

• Nodes represent intersections or hubs.
• Directed arcs represent roads.
• Each arc has:

– a capacity: maximum vehicles per unit time,
– a unit cost: fuel, tolls, congestion, or time per vehicle.

Some nodes supply vehicles, some demand vehicles, and others simply pass vehicles through.

The goal is to route all required vehicles at minimum total cost, subject to: - road capacities,
- flow conservation at every node.

This problem has a clean and powerful linear programming formulation.

2.2 Network Model
We are given a directed graph 𝐺 = (𝑉 , 𝐸).

2.2.1 Nodes

Each node 𝑛 ∈ 𝑉 has a supply value 𝑏𝑛:

• 𝑏𝑛 > 0: node supplies flow (source),
• 𝑏𝑛 < 0: node demands flow (sink),
• 𝑏𝑛 = 0: transshipment node.

Supplies balance demands:
∑
𝑛∈𝑉

𝑏𝑛 = 0.

7



2.2.2 Arcs

Each directed arc (𝑢, 𝑣) ∈ 𝐸 has:

• capacity 𝑐𝑢𝑣 ≥ 0,
• unit cost 𝑘𝑢𝑣 ≥ 0.

2.3 LP Formulation
2.3.1 Decision variables

For each arc (𝑢, 𝑣) ∈ 𝐸:
𝑓𝑢𝑣 ≥ 0 flow on arc (𝑢, 𝑣).

2.3.2 Objective: Minimize total cost

min ∑
(𝑢,𝑣)∈𝐸

𝑘𝑢𝑣 𝑓𝑢𝑣.

2.3.3 Constraints

1. Capacity constraints (Can’t direct flow to a road more than its capacity)

0 ≤ 𝑓𝑢𝑣 ≤ 𝑐𝑢𝑣 ∀(𝑢, 𝑣) ∈ 𝐸.

2. Flow conservation (Cars are neither created nor destroyed) For each node 𝑛 ∈ 𝑉 :

∑
𝑣∶(𝑛,𝑣)∈𝐸

𝑓𝑛𝑣 − ∑
𝑢∶(𝑢,𝑛)∈𝐸

𝑓𝑢𝑛 = 𝑏𝑛.

Interpretation:
“What flows into a node must flow out, except at sources and sinks.”

2.4 PART A — Coding: Large-Scale Min-Cost Flow
You will implement this LP in Gurobi and solve it for large networks.

The autograder will include graphs with up to 100,000+ nodes and edges.
You are expected to rely on the LP solver, not to write custom graph algorithms.

8



2.4.1 Data Passed to Your Function

Nodes and supplies

• nodes: list of node names (strings),
• supply: dictionary mapping node → 𝑏𝑛.

Example:

nodes = ["S", "A", "B", "C", "T"]
supply = {"S": 10, "A": 0, "B": 0, "C": 0, "T": -10}

Arcs A pandas DataFrame arcs with columns:

• "from": tail node 𝑢,
• "to": head node 𝑣,
• "capacity": 𝑐𝑢𝑣,
• "cost": 𝑘𝑢𝑣.

2.4.2 What You Must Implement

Create a file named hw2_p2_flow.py that defines exactly this function:

import pandas as pd
import gurobipy as gp

def solve_gridlock(nodes, arcs, supply):
"""
Solve a minimum-cost flow LP.

Inputs
------
nodes : list[str]

Node names.

arcs : pd.DataFrame
Columns: 'from', 'to', 'capacity', 'cost'.

supply : dict[str, float]
Node supplies b_n (positive) and demands (negative).
Must satisfy sum(b_n) = 0.

Returns
-------
flow : dict[(str, str), float]

flow[(u,v)] is the optimal flow on arc (u,v).

total_cost : float
Minimum total transportation cost.

9



"""
# TODO
raise NotImplementedError

2.4.3 Requirements

• Use Gurobi (gurobipy).
• All decision variables must be continuous and nonnegative.
• Do not hard-code:

– number of nodes,
– number of arcs,
– node names,
– capacities or costs.

• Your implementation must scale to very large graphs.
• Return plain Python objects, not Gurobi objects.

2.4.4 Important Observation (Not Directly Graded)

Even though you solve a continuous LP, it turns out that min-cost flow problems with integer
data (i.e. integer cost and capacity) always admit integer optimal flows, and that is returned by
Gurobi! You may notice this empirically in your outputs.

2.5 PART B — Interpretation: Shadow Prices & What-If Analysis
This part is about understanding dual values.

2.5.1 Toy Network:

Nodes:
{𝑆, 𝐴, 𝐵, 𝐶, 𝑇 }

From To Capacity Cost
S A 10 2.0
S B 8 3.0
A C 5 1.0
B C 10 1.5
A T 4 2.0
C T 12 1.0

Supply: 𝑏𝑆 = +10, Demand: 𝑏𝑇 = −10.

10



2.5.2 Tasks

1. Solve the baseline LP
• Report optimal flows using your solution from part A.
• Report total cost.
• Identify which capacity constraints are binding.

2. Dual values (shadow prices)
• Report the dual value on each capacity constraint.
• Interpret: If you could add one unit of capacity to that road, how much would total cost

change?
3. Scenario analysis: road closure

• Close arc (A →C) by setting its capacity to zero.
• Re-solve the LP.
• How much does total cost increase?
• Does this match the shadow-price prediction?

4. Interpretation
• Which roads are bottlenecks?
• Which capacities are most valuable?
• How does the network reroute when a cheap link fails?
• What economic story do the dual values tell about congestion and redundancy?

2.5.3 Deliverable for Part B

A short, clear write-up including:

• Baseline flows and cost,
• Shadow prices and interpretation,
• Cost comparison after the closure,
• A brief investment recommendation (which road should be expanded and why).

2.6 Final Note
This problem illustrates an important lesson on dual values: Dual variables are not abstract
math, they are prices. They tell you which constraints matter, how fragile a system is, and
where investment has real value.

11



3 Problem 3 — Robust Line Fitting (Coding)
You’re helping a lab calibrate a noisy sensor. You suspect a roughly linear relationship
between input (x) and measured output (y), but the data has outliers — so instead of
least squares, you’ll fit the line using linear programming.

This is a coding-only problem. It will be autograded on Gradescope.

3.1 Background
Ordinary regression finds 𝑎, 𝑏 minimizing

∑
𝑖

(𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖))2.

That’s a least-squares problem, nonlinear and very sensitive to outliers (because large residuals
get squared).

If we instead minimize absolute deviations or the largest deviation, the problem becomes a
linear program.

You’ll implement two such models for the line 𝑦 = 𝑎 + 𝑏𝑥.

3.2 Inputs
Your functions will take two 1D NumPy arrays:

x_data : np.ndarray of shape (n,)
y_data : np.ndarray of shape (n,)

They contain the 𝑥𝑖 and 𝑦𝑖 values of the observed points.

Your code must work for any numeric data (do not hard-code sizes or numbers).

Example for testing:

import numpy as np
x_data = np.array([0, 1, 2, 3, 4, 5], float)
y_data = np.array([1.0, 1.9, 2.2, 3.1, 4.5, 5.3], float)

3.3 Part A [50 points] 𝐿1 (Sum of Absolute Deviations)
We want the line 𝑦 = 𝑎 + 𝑏𝑥 minimizing the total absolute error:

min
𝑎,𝑏

∑
𝑖

|𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖)|.

The absolute value makes this nonlinear, but we can linearize it by introducing nonnegative
variables 𝑒𝑖 ≥ 0 representing the magnitude of each residual:

$ r_i = y_i - (a + b x_i). $

We require
{𝑟𝑖 ≤ 𝑒𝑖, −𝑟𝑖 ≤ 𝑒𝑖.

12



These two inequalities together mean |𝑟𝑖| ≤ 𝑒𝑖.

Then minimize the total deviation ∑𝑖 𝑒𝑖.

3.3.1 LP Summary

Variable Meaning
𝑎, 𝑏 intercept and slope
𝑒𝑖 absolute deviation of point 𝑖 (≥ 0

Objective:
min ∑

𝑖
𝑒𝑖

Constraints:
𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖) ≤ 𝑒𝑖, −(𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖)) ≤ 𝑒𝑖.

3.4 Part B: 𝐿∞ (Minimax Deviation)
Now we minimize the largest absolute deviation:

min
𝑎,𝑏

max
𝑖

|𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖)|.

Introduce a single variable
𝑡 ≥ 0

representing the maximum deviation.

Then think of a set of constraints that would enforce

𝑡 ≥ max
𝑖

|𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖)|

Hint: Use part A first to get rid of the absolute value. The objective is simply min 𝑡.

3.4.1 LP Summary

Variable Meaning
𝑎, 𝑏 intercept and slope
𝑡 maximum absolute deviation

Objective:
min 𝑡

Constraints: ???

13



3.5 What You Must Implement
Create a file hw2_p3_calibration.py defining:

import numpy as np
import gurobipy as gp

def l1_line_fit(x_data, y_data):
"""
Fit y = a + b x minimizing sum of absolute deviations (L1 norm).

Returns
-------
a : float

Intercept
b : float

Slope
obj_value : float

Optimal sum of absolute deviations.
"""
# TODO: implement
raise NotImplementedError

def linf_line_fit(x_data, y_data):
"""
Fit y = a + b x minimizing the maximum absolute deviation (L-infinity norm).

Returns
-------
a : float

Intercept
b : float

Slope
t_value : float

Minimum possible max absolute deviation.
"""
# TODO: implement
raise NotImplementedError

3.6 Implementation Requirements
• Use Gurobi (gurobipy).
• Your code must work for any number of points.
• Both problems are pure LPs with continuous variables.
• In both:

– Create variables (a, b, e[i] or t).
– Add linear constraints as above.
– Set and solve the LP with model.optimize().

14



– Return the fitted coefficients and the optimal objective value.

3.7 Example (for local testing)
x = np.array([0, 1, 2, 3, 4, 5])
y = np.array([0.5, 1.2, 2.3, 2.8, 4.6, 5.4])

a1, b1, obj1 = l1_line_fit(x, y)
a_inf, b_inf, t_inf = linf_line_fit(x, y)

print("L1 fit: y =", b1, "x +", a1, " total |error| =", obj1)
print("L∞ fit: y =", b_inf, "x +", a_inf, " max |error| =", t_inf)

15



4 Problem 4 — Equivalent Forms of Linear Programming (Writ-
ten)

Linear programs (LPs) can be written in many algebraically different but mathematically equivalent
ways. In this problem, you’ll show that these forms are all interchangeable, that is, any LP can
be rewritten in any other “standard” form by adding only a small number of extra variables or
constraints.

4.1 Background
Consider three common ways of expressing an LP:

1. General form (mixed inequalities):

min
𝑥

𝑐⊤𝑥 s.t. 𝐴1𝑥 ≤ 𝑏1, 𝐴2𝑥 = 𝑏2, 𝐴3𝑥 ≥ 𝑏3, 𝑥𝑗 free for some 𝑗.

2. Standard (inequality) form:

min
𝑥

; 𝑐⊤𝑥 s.t. 𝐴𝑥 ≤ 𝑏, ; 𝑥 ≥ 0.

3. Canonical (equality) form:

min
𝑥

; 𝑐⊤𝑥 s.t. 𝐴𝑥 = 𝑏, ; 𝑥 ≥ 0.

4.2 Part A — From general to standard form (20 pts)
Explain how to transform the general LP into standard inequality form using the following
operations:

• Replace any variable that is unrestricted in sign (“free”) by the difference of two nonnegatives
𝑥𝑗 = 𝑥+

𝑗 − 𝑥−
𝑗 .

• Convert all “(≥)” constraints into “(≤)” constraints by multiplying by (-1).

Prove that these transformations do not change the optimal objective value, although they may
introduce extra variables.

(Hint: each “free” variable introduces one new variable; each “�” constraint can be flipped in place.)

4.3 Part B — From inequality to equality (slack form) (20 pts)
Show that any LP of the form

min
𝑥

𝑐⊤𝑥 s.t. 𝐴𝑥 ≤ 𝑏, ; 𝑥 ≥ 0

can be written equivalently as

min
𝑥,𝑠

𝑐⊤𝑥 s.t. 𝐴𝑥 + 𝑠 = 𝑏, ; 𝑥 ≥ 0, ; 𝑠 ≥ 0.

Explain why introducing one slack variable 𝑠𝑖 per inequality constraint preserves the feasible region
in one-to-one correspondence.

16



4.4 Part C — From equality to inequality form (20 pts)
Show how to reverse Part B: any equality constraint 𝑎⊤

𝑖 𝑥 = 𝑏𝑖 can be replaced by two inequalities.
What happens to the number of constraints? Why does this again preserve the same optimal
objective value?

4.5 Part D — Summary of Equivalence (20 pts)
Summarize all the transformations in one table, indicating:

• what gets added (new variables or new constraints),
• the typical number added per operation, and
• why none of these affect optimality (only the representation).

Example structure:

From → To Additions Rationale
General → Standard free vars → 2 nonnegatives; flip “�” preserves feasible set
Standard → Canonical add one slack per inequality equality form, same opt
Canonical → Standard replace each “=” by two “�” same feasible set

4.6 Part E — Conceptual Reflection (20 pts)
In your own words (� 150 words), explain why these forms are considered equivalent in optimization
theory. What makes them interchangeable in proofs, algorithms (like simplex), or solver input
formats?

(Your answer should emphasize that equivalence means: same feasible region in a higher-dimensional
space and same optimal value, even if variable count changes slightly.)

17


	Problem 1: Sherali–Adams & Maximum Independent Set
	Graph Input: Adjacency Matrix
	Decision Variables
	Part A – The Basic MIS LP Relaxation (for any graph)
	Part B – Why the Basic LP Can Be Too Weak: The 5-Cycle Example
	Part C – Strengthening the LP by Adding More Inequalities
	Odd-Cycle Inequality
	General Odd-Cycle Inequalities

	Part D – Using NetworkX to Find Odd Cycles
	Installing NetworkX (on your machine)
	Building a Graph from the Adjacency Matrix
	Listing Simple Cycles

	What You Must Implement
	Implementation Requirements
	1. Basic LP
	2. Strengthened LP with Odd-Cycle Inequalities

	What You Should Observe

	Problem 2 — Modelling: The Gridlock Gambit (Coding + Written)
	Background: What Is a Min-Cost Flow Problem?
	Network Model
	Nodes
	Arcs

	LP Formulation
	Decision variables
	Objective: Minimize total cost
	Constraints

	PART A — Coding: Large-Scale Min-Cost Flow
	Data Passed to Your Function
	What You Must Implement
	Requirements
	Important Observation (Not Directly Graded)

	PART B — Interpretation: Shadow Prices & What-If Analysis
	Toy Network:
	Tasks
	Deliverable for Part B

	Final Note

	Problem 3 — Robust Line Fitting (Coding)
	Background
	Inputs
	Part A [50 points] L_1 (Sum of Absolute Deviations)
	LP Summary

	Part B: L_\infty (Minimax Deviation)
	LP Summary

	What You Must Implement
	Implementation Requirements
	Example (for local testing)

	Problem 4 — Equivalent Forms of Linear Programming (Written)
	Background
	Part A — From general to standard form (20 pts)
	Part B — From inequality to equality (slack form) (20 pts)
	Part C — From equality to inequality form (20 pts)
	Part D — Summary of Equivalence (20 pts)
	Part E — Conceptual Reflection (20 pts)


