
CS498 Homework 3

February 8, 2026

1 Problem 1: SOS1 and SOS2 Without SOS (Theory)
In many solvers, SOS1 and SOS2 are “native” constraint types.
In this problem, you will derive equivalent MILP formulations using only binary
variables and Big-M (or indicator constraints), and you will justify correctness.

Throughout, assume all continuous variables are bounded (you may introduce explicit bounds as
part of your formulation).

1.1 Part A: SOS1 from scratch (at most one nonzero)
Let 𝑥1,… , 𝑥𝑛 be continuous variables with known bounds 0 ≤ 𝑥𝑖 ≤ 𝑈𝑖 for 𝑖 = 1,… , 𝑛..
An SOS1 constraint on {𝑥1,… , 𝑥𝑛} means at most one of 𝑥1,… , 𝑥𝑛 is nonzero.

1.1.1 Tasks

1. Big-M ILP formulation.
Introduce binary variables 𝑧1,… , 𝑧𝑛 ∈ {0, 1} and write a set of linear constraints (using Big-
𝑀 or the bounds 𝑈𝑖) such that the feasible solutions in (𝑥, 𝑧)-space project exactly onto the
SOS1 set in 𝑥-space.

2. Exactness proof.
Prove both directions:

• (Soundness) every feasible ILP solution in (𝑥, 𝑧)-space satisfies the SOS1 property;
• (Completeness) every SOS1-feasible 𝑥 can be extended to some 𝑧 satisfying your ILP

constraints.

1.2 Part B: SOS2 from scratch (at most two adjacent nonzero)
Let 𝜆1,… , 𝜆𝐾 be continuous variables with

𝜆𝑘 ≥ 0 (𝑘 = 1,… ,𝐾),
𝐾
∑
𝑘=1

𝜆𝑘 = 1.

An SOS2 constraint on {𝜆1,… , 𝜆𝐾} means:

at most two of the 𝜆𝑘 can be positive, and if two are positive they must be adjacent (𝜆𝑗, 𝜆𝑗+1).

1

1.2.1 Tasks

1. Binary segment selection formulation.
Introduce binary variables 𝑧1,… , 𝑧𝐾−1 ∈ {0, 1} indicating which adjacent pair (𝑗, 𝑗 + 1) is
active, and write linear constraints enforcing:

• exactly one adjacent pair is selected;
• 𝜆 can place weight only on the selected pair.

Your constraints must be linear.

2. Exactness proof.
Prove your formulation is equivalent to SOS2 under the given simplex constraints 𝜆 ≥ 0,
∑𝜆 = 1.

1.3 Deliverables
• A correct MILP formulation for SOS1, plus a short correctness proof.
• A correct MILP formulation for SOS2, plus a short correctness proof.
• A brief discussion of LP relaxation strength / Big-𝑀 dependence (i.e. if 𝑀 is to large, what

happens?).

2

2 Problem 2: Painting a 3D Tic-Tac-Toe Cube (Coding).
You are given a tiny 3D tic-tac-toe cube and two paints: red and blue. Your job is to
color the cube so that as few lines as possible end up all red or all blue.

We consider a 3 × 3 × 3 cube of cells:

• 3 positions along the x-direction,
• 3 positions along the y-direction,
• 3 positions along the z-direction,

for a total of 27 cells.

You must color each cell with exactly one color:

• 13 red cells,
• 14 blue cells,

so that all 27 cells are colored (no empty cells).

We say that three cells are on the same line if they are:

1. Axis-aligned inside the cube

• Along x (row): same (y,z), x varies over ({0,1,2})
• Along y (column): same (x,z), y varies over ({0,1,2})
• Along z (pillar): same (x,y), z varies over ({0,1,2})

These are the straight 3-in-a-row lines in the directions of the cube’s edges.

2. Face diagonals in any 3×3 slice:

• Diagonals in each horizontal layer (constant (z)),
• Diagonals in each vertical x–z slice (constant (y)),
• Diagonals in each vertical y–z slice (constant (x)).

3. Space diagonals of the cube:

• The 4 long diagonals connecting opposite corners of the cube.

Altogether, there are exactly 49 distinct lines of length 3 in the 3×3×3 cube.

[2]: import itertools
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

--
Enumerate all 49 lines in the 3x3x3 cube
--
def generate_all_lines():

lines = []
for y in range(3):

for z in range(3):
lines.append([(x, y, z) for x in range(3)])

3

for x in range(3):
for z in range(3):

lines.append([(x, y, z) for y in range(3)])
for x in range(3):

for y in range(3):
lines.append([(x, y, z) for z in range(3)])

for z in range(3):
lines.append([(0, 0, z), (1, 1, z), (2, 2, z)])
lines.append([(0, 2, z), (1, 1, z), (2, 0, z)])

for y in range(3):
lines.append([(0, y, 0), (1, y, 1), (2, y, 2)])
lines.append([(0, y, 2), (1, y, 1), (2, y, 0)])

for x in range(3):
lines.append([(x, 0, 0), (x, 1, 1), (x, 2, 2)])
lines.append([(x, 0, 2), (x, 1, 1), (x, 2, 0)])

lines.extend([
[(0, 0, 0), (1, 1, 1), (2, 2, 2)],
[(0, 0, 2), (1, 1, 1), (2, 2, 0)],
[(0, 2, 0), (1, 1, 1), (2, 0, 2)],
[(0, 2, 2), (1, 1, 1), (2, 0, 0)],

])
assert len(lines) == 49, f"Expected 49 lines, got {len(lines)}"
return lines

--
Helper: draw one line
--
def draw_line_voxels_on_axes(ax, line):

cube = np.ones((3, 3, 3), dtype=bool)
line_mask = np.zeros_like(cube, dtype=bool)
for (x, y, z) in line:

line_mask[x, y, z] = True
base_mask = cube & ~line_mask
ax.voxels(

base_mask,
facecolors="lightgray",
edgecolor="k",
alpha=0.08, # see-through

)
ax.voxels(

line_mask,
facecolors="red",
edgecolor="k",
alpha=0.95,

)
ax.set_xlim(0, 3)
ax.set_ylim(0, 3)

4

ax.set_zlim(0, 3)
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])
ax.set_box_aspect((1, 1, 1))
ax.view_init(elev=25, azim=35)
ax.set_axis_off()

def visualize_all_lines_grid():
lines = generate_all_lines()
n = len(lines)
rows = cols = 7
fig = plt.figure(figsize=(10, 10))
for idx, line in enumerate(lines):

r = idx // cols
c = idx % cols
ax = fig.add_subplot(rows, cols, idx + 1, projection='3d')
draw_line_voxels_on_axes(ax, line)

plt.tight_layout()
plt.show()

visualize_all_lines_grid()

5

A line is called monochromatic if all three cells in that line are:

• all red, or
• all blue.

2.1 Optimization goal
You must:

• Assign 13 cells to be red, and 14 cells to be blue,
• Use each cell exactly once (fully colored cube),

to minimize the number of monochromatic lines (3-in-a-row, either color).

In other words:

6

Arrange your 13 red and 14 blue cells on the 3×3×3 grid so that as few as possible of
the 49 lines end up entirely red or entirely blue.

2.2 Deliverables
Formulate the problem as an integer linear program and write the ILP explicitly. Implement your
ILP in gurobi and solve it, and report the minimum number of monochramatic lines (and the code
you used), as well as visualize the final coloring.

2.3 Note
In essence, the branch and bound algorithm proves that this number is the minimum number
of monochromatic lines (i.e. the trace of the B&B algorithm is a completely valid mathematical
proof). However, writing a human-readable proof for this problem turns out to be extremely hard.
Try it for youself (300pts bonus for a full formal proof!). If you were writing a paper, you can use
the trace of the B&B algorithm as a computer-assisted proof.

7

3 Problem 3: McCormick linearization (Gradescope)
Let’s start with a toy problem.

Consider 𝐷 departments and 𝐶 candidate cities 𝐷 > 𝐶. Each department must be located in
exactly one city.

• Let x[d,c] � {0,1} = 1 if department d is located in city c.
• Each pair of departments 𝑖, 𝑗 has a communication volume h[i,j] (calls/day).
• Each pair of cities 𝑐1, 𝑐2 has a communication cost per unit d[c�,c�].
• If departments 𝑖 and 𝑗 are placed in cities 𝑐1 and 𝑐2, their communication cost is: ℎ[𝑖, 𝑗] ⋅

𝑑[𝑐1, 𝑐2].
• Additionally, if a department 𝑖 is relocated to city 𝑐, then we get a benefit of 𝑏[𝑖, 𝑐] dollars.
• We want to minimize the total sum of all communication costs across all pairs of departments.

3.0.1 Naive Initial Model

The constraint on each department being in exactly one city is easy; for all departments 𝑑:

∑
𝑐

𝑥[𝑑, 𝑐] = 1

The total communication cost, however, is:

∑
𝑖

∑
𝑐

𝑏[𝑖, 𝑐]𝑥𝑖,𝑐 +∑
𝑖<𝑗

∑
𝑐1

∑
𝑐2

ℎ𝑖𝑗𝑑𝑐1𝑐2𝑥𝑖,𝑐1𝑥𝑗,𝑐2 .

This is quadratic in the variables (x’s), so this not an LP or an ILP. This exercise will guide you
to apply McCormick linearization to replace the quadratic binary terms with linear ones.

3.0.2 Linearization Idea

Introduce variables z[i,j,c1,c2] intended to represent: - 𝑧[𝑖, 𝑗, 𝑐1, 𝑐2] = 𝑥[𝑖, 𝑐1] ⋅ 𝑥[𝑗, 𝑐2]
Consider the three McCormick linearization constraints: - z[i, j, c_1, c_2] <= x[i,c1] - z[i,
j, c_1, c_2] <= x[j,c2] - z[i, j, c_1, c_2] >= x[i,c1] + x[j,c2] − 1

We look at a single pair of departments 𝑖, 𝑗 and cities 𝑐1, 𝑐2. Let:

• 𝑥𝑖 = 𝑥[𝑖, 𝑐1] ∈ {0, 1}
• 𝑥𝑗 = 𝑥[𝑗, 𝑐2] ∈ {0, 1}
• 𝑧 = 𝑧[𝑖, 𝑗, 𝑐1, 𝑐2]

Constraints:

• 𝑧 ≤ 𝑥𝑖
• 𝑧 ≤ 𝑥𝑗
• 𝑧 ≥ 𝑥𝑖 + 𝑥𝑗 − 1

Truth table (Fill it in!):

8

𝑥[𝑖, 𝑐1] 𝑥[𝑗, 𝑐2] 𝑧 ≤ 𝑥[𝑖, 𝑐1] 𝑧 ≤ 𝑥[𝑗, 𝑐2]
𝑧 ≥

𝑥[𝑖, 𝑐1] + 𝑥[𝑗, 𝑐2] − 1
Allowed

𝑧 𝑥[𝑖, 𝑐1] ⋅ 𝑥[𝑗, 𝑐2]
0 0 𝑧 ≤ ?? 𝑧 ≤ ?? 𝑧 ≥ ?? 𝑧 = ?? ??
0 1 𝑧 ≤ ?? 𝑧 ≤ ?? 𝑧 ≥ ?? 𝑧 = ?? ??
1 0 𝑧 ≤ ?? 𝑧 ≤ ?? 𝑧 ≥ ?? 𝑧 = ?? ??
1 1 𝑧 ≤ ?? 𝑧 ≤ ?? 𝑧 ≥ ?? 𝑧 = ?? ??

Conclusion:

For binary 𝑥[𝑖, 𝑐1] and 𝑥[𝑗, 𝑐2], the McCormick constraints forces

𝑧[𝑖, 𝑗, 𝑐1, 𝑐2] = 𝑥[𝑖, 𝑐1] ⋅ 𝑥[𝑗, 𝑐2]

So we can replace the quadratic term 𝑥[𝑖, 𝑐1]𝑥[𝑗, 𝑐2] in the objective with a new variable 𝑧[𝑖, 𝑗, 𝑐1, 𝑐2]
and a set of linear constraints.

Then the objective becomes linear in z:

min∑
𝑖

∑
𝑐

𝑏[𝑖, 𝑐]𝑥𝑖,𝑐 +∑
𝑖<𝑗

∑
𝑐1

∑
𝑐2

ℎ𝑖𝑗𝑑𝑐1𝑐2𝑧𝑖𝑗𝑐1𝑐2

Now we will use this idea to solve a new problem.

3.0.3 Team assignment with collaboration effects and capacity

A company must assign employees to project teams.

• There are 𝑁 employees and 𝑇 teams, with 𝑁 > 𝑇 .
• Each employee must be assigned to exactly one team.
• Each team can have at most (K) employees.

Decision variables

• 𝑥[𝑖, 𝑡] ∈ {0, 1}: 𝑥[𝑖, 𝑡] = 1 iff employee 𝑖 is assigned to team 𝑡.

Data

• 𝑐[𝑖, 𝑡]: base cost of assigning employee 𝑖 to team 𝑡.
• 𝑠[𝑖, 𝑗]: collaboration intensity between employees 𝑖 and 𝑗 (symmetric, and 𝑠[𝑖, 𝑖] = 0).
• 𝑤[𝑡]: productivity multiplier for team 𝑡.
• 𝐾: maximum team size.

If employees 𝑖 and 𝑗 are assigned to the same team 𝑡, they generate a productivity gain:

𝑠[𝑖, 𝑗] ⋅ 𝑤[𝑡].

9

Given nonlinear model Assignment constraints:

∑
𝑡

𝑥[𝑖, 𝑡] = 1 ∀𝑖

Capacity constraints:

∑
𝑖

𝑥[𝑖, 𝑡] ≤ 𝐾 ∀𝑡

Objective:

min∑
𝑖

∑
𝑡

𝑐[𝑖, 𝑡], 𝑥[𝑖, 𝑡] −∑
𝑖<𝑗

∑
𝑡

𝑠[𝑖, 𝑗], 𝑤[𝑡]; 𝑥[𝑖, 𝑡], 𝑥[𝑗, 𝑡].

This objective is not linear.

3.0.4 What you must submit

Create a file named:

hw3_p3_team.py

and implement:

def build_team_ilp(c, s, w, K):
"""
Inputs:

c: numpy array shape (N,T)
s: numpy array shape (N,N) symmetric with zeros on diagonal
w: numpy array shape (T,)
K: int

Return:
(model, x)

where:
model is a gurobipy.Model that is a PURE MILP (no quadratic objective/constraints),
x is a dict keyed by (i,t) -> gurobipy.Var for the assignment variables x[i,t].

"""
raise NotImplementedError

Your model must:

• enforce the two constraint sets (exactly-one assignment and capacity),
• use only linear expressions (no quadratic objective, no quadratic constraints),
• optimize to the correct minimum objective value.

10

4 Problem 4: Your Own Branch-and-Bound Knapsack Solver
(Gradescope)
Before trusting a MIP solver’s magic, you’ll build a tiny one yourself for knapsack.

You’ll implement a recursive Branch-and-Bound (B&B) algorithm for a small 0–1 knapsack
problem. You may use Gurobi only to solve LP relaxations at each node (i.e., relax 𝑥 ∈ {0, 1}
to 0 ≤ 𝑥 ≤ 1). The branching logic and pruning must be yours.

4.1 The 0/1 Knapsack Model
You are choosing a subset of items with value 𝑣𝑖 and weight 𝑤𝑖 to fit into a knapsack of capacity
𝐶:

• Decision variables:

𝑥𝑖 ∈ {0, 1} (1 if item i is chosen)

• Objective:

max∑
𝑖

𝑣𝑖𝑥𝑖

• Capacity constraint:

∑
𝑖

𝑤𝑖𝑥𝑖 ≤ 𝐶

4.2 B&B overview (what your code should do)
A B&B node consists of some fixed variable assignments like:

{𝑥1 = 1, 𝑥3 = 0}

At each node:

1. Build & solve the LP relaxation with those variable fixings.
2. If infeasible: prune.
3. If LP bound ≤ best incumbent value: prune.
4. If LP solution is integral: update incumbent.
5. Otherwise pick a fractional variable 𝑥𝑘 and branch:

• Left child: add fixing 𝑥𝑘 = 0
• Right child: add fixing 𝑥𝑘 = 1

You should print a small trace of the search (node fixes, LP bound, whether pruned, etc.). (Printing
is not graded, but helpful.)

11

4.3 Deliverable
Submit a single file:

hw3_p4_bnb.py

You must fill in the TODOs in the provided skeleton. Your solve() should return:

• best objective value,
• best 0/1 solution (as a dict {i:0/1}),
• number of nodes explored.

4.4 Starter skeleton (copy into hw3_p4_bnb.py)
from __future__ import annotations
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, List
import numpy as np
import gurobipy as gp
from gurobipy import GRB

@dataclass
class Node:

"""
A node in the Branch-and-Bound tree.

fixes: variable index -> 0/1 (fixed assignments inherited from the B&B tree)
bound: LP relaxation objective value (upper bound for maximization)
solution: LP relaxation solution (possibly fractional): index -> value
"""
fixes: Dict[int, int]
bound: Optional[float] = None
solution: Optional[Dict[int, float]] = None

class KnapsackBranchAndBound:
def __init__(self, values: List[float], weights: List[float], capacity: float):

assert len(values) == len(weights), "values and weights must have same length"
self.values = values
self.weights = weights
self.capacity = capacity
self.n = len(values)

incumbent
self.best_obj: float = float("-inf")
self.best_sol: Optional[Dict[int, int]] = None

bookkeeping
self.node_count: int = 0

12

Solve LP relaxation at a node

def solve_relax(self, node: Node) -> int:

"""
Solve the LP relaxation at the given node, updating node.bound and node.solution.

Requirements:
- Variables must be continuous with bounds [0,1].
- Add the capacity constraint.
- Apply all fixings in node.fixes (force x[i] == 0 or 1).
- Objective: maximize sum_i v[i] * x[i].

Returns: Gurobi status code.
"""
m = gp.Model("node_relax")
m.Params.OutputFlag = 0

x = m.addVars(self.n, lb=0.0, ub=1.0, vtype=GRB.CONTINUOUS, name="x")

TODO (1): Add capacity constraint: sum_i w[i] * x[i] <= C

TODO (2): Apply fixings from node.fixes (e.g., constraints x[i] == val)

TODO (3): Set objective to maximize total value

m.optimize()
status = m.Status

TODO (4): If optimal, set:
node.bound = objective value (float)
node.solution = {i: x[i].X for i in range(n)}
Else set node.bound and node.solution to None

return status

Choose branching variable

def choose_branch_var(self, node: Node) -> Optional[int]:

"""
Return an index of a fractional (non-integer) variable to branch on.
If more than one variable is fractional, break ties on the first fractional variable

you find in order range(self.n).
Return None if all unfixed variables are integral.
"""
if node.solution is None:

13

return None

TODO (5): Find an i not in node.fixes with node.solution[i] fractional.
TODO: branch on the first fractional variable you find to break ties.
return None

Recursive Branch-and-Bound

def branch_and_bound(self, node: Node) -> None:

"""
Recursive B&B procedure.

Expected logic:
- Solve LP relaxation at node
- Prune if infeasible/non-optimal
- Prune if bound <= incumbent
- If solution integral: update incumbent
- Else branch on fractional variable:

left: fix x[k]=0
right: fix x[k]=1

"""
self.node_count += 1

status = self.solve_relax(node)
print(

f"Node {self.node_count}, fixes={node.fixes}, status={status}, "
f"bound={node.bound}, incumbent={self.best_obj}"

)

TODO (6): Prune if LP is infeasible or not optimal (no valid bound) [Just return]

TODO (7): Prune if node.bound is not better than incumbent self.best_obj [Just return]

TODO (8): Check if node.solution is integral (using choose_branch_var or your own check)
If integral:
update self.best_obj and self.best_sol (update incumbent if needed)
return

TODO (9): Otherwise, pick branching variable k and create children:
left child fixes = node.fixes plus {k: 0}
right child fixes = node.fixes plus {k: 1}
Then recurse on each child (order is up to you).

return

def solve(self) -> Tuple[float, Dict[int, int], int]:
"""

14

Run Branch-and-Bound from the root node.
Returns (best_obj, best_sol_dict, node_count).
"""
self.best_obj = float("-inf")
self.best_sol = None
self.node_count = 0

root = Node(fixes={})
self.branch_and_bound(root)

return self.best_obj, (self.best_sol or {}), self.node_count

Sample usage:

values = [20, 18, 14, 10, 8, 7, 6, 5]
weights = [6, 5, 4, 3, 4, 2, 3, 2]
capacity = 15

print("=== Custom Branch-and-Bound trace ===")
bnb = KnapsackBranchAndBound(values, weights, capacity)
best_obj, best_sol, nodes = bnb.solve()
print("\nBest objective:", best_obj)
print("Best solution:", best_sol)
print("Nodes visited:", nodes)

15

5 Problem 5: A 2-Approximation for 0–1 Knapsack (Theory +
Gradescope Coding)

You are given a 0–1 knapsack instance with:

• items 𝑖 = 0,… , 𝑛 − 1
• values 𝑣𝑖 ≥ 0, weights 𝑤𝑖 > 0
• capacity 𝐶

Decision variables 𝑥𝑖 ∈ {0, 1} indicate whether we take item 𝑖.

max∑
𝑖

𝑣𝑖𝑥𝑖 s.t. ∑
𝑖

𝑤𝑖𝑥𝑖 ≤ 𝐶, 𝑥𝑖 ∈ {0, 1}.

5.1 Part A: Theory
We will study two simple heuristics and then combine them to get a 2-approximation.

5.1.1 Algorithm 1 (Greedy-by-density)

Sort items by “bang-per-buck” (density) $ �_i = v_i / w_i $ from largest to smallest. Scan in that
order and add an item if it fits within your (remaining) budget.

Call the resulting set 𝐺, with value 𝑉 (𝐺).

5.1.2 Algorithm 2 (Best single item)

Pick the single feasible item with the largest value:

𝑆 = arg max{𝑣𝑖 ∶ 𝑤𝑖 ≤ 𝐶},

with value 𝑉 (𝑆) (or 0 if no item fits).

5.1.3 Combined Algorithm (what you will implement)

Return the better of the two:

𝐴 = max{𝑉 (𝐺), 𝑉 (𝑆)}.

5.1.4 A1. Show each strategy alone can be arbitrarily bad

1. (Greedy-by-density can be arbitrarily bad) Construct an instance where greedy-by-
density returns value close to 1, but the optimal integer solution value is much larger.

2. (Best single item can be arbitrarily bad) Construct an instance where the best single
item has value 1, but the optimal solution can be much larger.

16

5.1.5 A2. Prove the combined algorithm is a 2-approximation

Let OPT be the optimal integer value.

You will prove:

max{𝑉 (𝐺), 𝑉 (𝑆)} ≥ 1
2,OPT.

Step 1 (Fractional knapsack upper bound):

Consider the fractional knapsack solution obtained by sorting by density and filling greedily
(strategy 1), but allowing the last item to be taken fractionally. Let its value be 𝐹 . Explain why:

𝐹 ≥ OPT.

Hint: Prove that this fractional solution is the optimal solution to the fractional relaxation of
knapsack (i.e. relaxing 0 ≤ 𝑥𝑖 ≤ 1).

Step 2 (Structure of the fractional solution): In the fractional greedy solution, all items
before some index 𝑘 are taken fully, and item 𝑘 is possibly fractional. Write:

𝐹 = 𝑉 (items before 𝑘) + 𝛼𝑣𝑘
for some (��[0,1]).

Let 𝑉 (𝐺) denote the value of the 0–1 greedy solution (which takes exactly the “items before 𝑘”
and then stops when the next item doesn’t fit).

Show:

𝑉 (𝐺) = 𝑉 (items before 𝑘).

Step 3 (The key inequality): Use Step 2 to argue:

𝐹 ≤ 𝑉 (𝐺) + 𝑣𝑘.

Step 4 (Relate 𝑣𝑘 to best single): Argue that the best single feasible item satisfies:

𝑉 (𝑆) ≥ 𝑣𝑘.

(Hint: why is item 𝑘 feasible by itself?)

Step 5 (Finish): Combine the above steps to show:

OPT ≤ 𝐹 ≤ 𝑉 (𝐺) + 𝑉 (𝑆) ≤ 2max{𝑉 (𝐺), 𝑉 (𝑆)}.

Conclude:

17

max{𝑉 (𝐺), 𝑉 (𝑆)} ≥ 1
2OPT.

5.2 Part B: Coding (Gradescope)
Implement the combined 2-approximation algorithm.

5.2.1 Deliverable

Submit one file:

hw3_p5_knapsack_approx.py

with the function:

def knapsack_2approx(values, weights, capacity):
"""
values: list[float] or list[int]
weights: list[float] or list[int]
capacity: float or int

Return a solution in this format:
- dict {i: 0/1} indicating if item i is chosen or not for all i=0...n-1.

Must be feasible: sum(weights[i] for chosen i) <= capacity and a 2-approximation.
"""

5.2.2 Requirements

Your function must:

1. Compute the greedy-by-density solution 𝐺.
2. Compute the best-single-item solution 𝑆.
3. Return whichever has larger total value (break ties however you want).
4. Run fast (you will be tested on many random instances).

Important: You should implement the greedy by sorting by density 𝑣𝑖/𝑤𝑖. (Ties can be broken
arbitrarily; the autograder checks the approximation guarantee, not your exact choices.)

18

	Problem 1: SOS1 and SOS2 Without SOS (Theory)
	Part A: SOS1 from scratch (at most one nonzero)
	Tasks

	Part B: SOS2 from scratch (at most two adjacent nonzero)
	Tasks

	Deliverables

	Problem 2: Painting a 3D Tic-Tac-Toe Cube (Coding).
	Optimization goal
	Deliverables
	Note

	Problem 3: McCormick linearization (Gradescope)
	Naive Initial Model
	Linearization Idea
	Team assignment with collaboration effects and capacity
	What you must submit

	Problem 4: Your Own Branch-and-Bound Knapsack Solver (Gradescope)
	The 0/1 Knapsack Model
	B&B overview (what your code should do)
	Deliverable
	Starter skeleton (copy into hw3_p4_bnb.py)

	Problem 5: A 2-Approximation for 0–1 Knapsack (Theory + Gradescope Coding)
	Part A: Theory
	Algorithm 1 (Greedy-by-density)
	Algorithm 2 (Best single item)
	Combined Algorithm (what you will implement)
	A1. Show each strategy alone can be arbitrarily bad
	A2. Prove the combined algorithm is a 2-approximation

	Part B: Coding (Gradescope)
	Deliverable
	Requirements

