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From Proofs to Solvers

While standard algorithms courses focus on proving
what is computable,
this course focuses on implementing what is necessary.
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CS 374: The Vocabulary

@ Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.
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Relation to CS 374

CS 374: The Vocabulary CS 498: The Application
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@ Goal: Determine theoretical
tractability (P vs NP).

@ Output: A formal proof.
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CS 498: The Application

@ Focuses on Modelling:
Transforming Problem A to B so
a solver for B can handle it.

@ Goal: Practical solutions for
real-world instances.

@ Output: A Python script or
implementation of an Algorithm
to solve the problem.
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Relation to CS 473

@ CS 473 analyzes the internal mathematics of the engine.

@ Advanced algorithmic techniques (example: randomization, flow,
advanced dynamic programming).

@ Focus on proving efficiency (run-time) and approximation gurantees
(bounds).
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Relation to CS 473

@ CS 473 analyzes the internal mathematics of the engine.

@ Advanced algorithmic techniques (example: randomization, flow,
advanced dynamic programming).

@ Focus on proving efficiency (run-time) and approximation gurantees
(bounds).

@ CS 498 teaches you how to drive the car.

@ We treat powerful solvers, that researchers have spent decades
working on, as black boxes to be mastered.

@ Focus on modeling complex constraints rather than implementing the
solver itself.

@ We still explain the theory behind the solvers, but the focus is on
basics of theory
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The “NP-Hard” Perspective

CS 374: "Stop”

Proving a problem is
NP-Hard is the end of the
conversation. It means an

efficient worst-case

algorithm does not
exist.
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Proving a problem is
NP-Hard is the end of the
conversation. It means an

efficient worst-case

algorithm does not
exist.

CS 473: "Detour”

Accept that exact
provable solutions are
impossible. Pivot to
designing algorithms that
provide guaranteed
approximations.
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CS 498: "Launch”

NP-Hardness is a
worst-case warning, not a
law of physics. Use
SAT/SMT solvers to
crush real-world
instances. No more
Grantees.
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Modern Tooling Stack

We move beyond “pseudocode” to industrial-grade Python libraries used in
Operations Research and Deep Learning.

@ Optimization:
, (Linear & Integer Programming)

@ Logic & Verification:
, (SMT & SAT Solvers)

@ Differentiation:
(Autograd & Neural Networks)
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Course Comparison Matrix

Feature CS 374 /473

CS 498

Primary Goal Proofs & Analysis

Hardness Prove it's impossible in
worst case

Key Tools Pencil, Paper, LaTeX

Style Purely Theoretical

Models & Implementations

Use solvers to solve your
instance anyway

Gurobi, Z3, PyTorch, ...

Hybrid (Basics of Theory +
Implementation)
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0 Course Logistics

@ Content and Types of Projects in Class

e History of Linear Programming
© Linear Programming: The Basics
Q The Engineer’s Diet Dilemma

e Interpreting and Debugging Gurobi Output
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Content and Types of Projects in Class
Part I: Discrete Optimization
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Content and Types of Projects in Class
Part I: Discrete Optimization
@ Linear & Integer Programming
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Content and Types of Projects in Class

@ Linear & Integer Programming @ SAT & SMT Solvers (23, PySAT)
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Content and Types of Projects in Class

@ Linear & Integer Programming @ SAT & SMT Solvers (23, PySAT)
@ Modeling with Gurobi @ Logic encodings (Sudoku,
@ Supply chain & Network models Scheduling)

@ Automated verification and Solving
Puzzles with SAT/SMT Solvers

@ First order and Second Order
Optimization Techniques

@ Genetic Algorithms and @ Data-Driven Optimization (aka
Metaheuristics. Data Science)
@ PyTorch & Autograd internals @ LLMs as Reasoning Engines,

@ Convex and Non-convex prompting, consistency, etc.
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Projects |: Optimization & Logic

1. The “Fleetline” Challenge (Week 3)
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Projects |: Optimization & Logic

1. The “Fleetline” Challenge (Week 3)

» A real problem from a YC startup (Who are giving us a guest lecture).

» Problem: You must assign truck drivers to loads to maximize revenue while
respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).
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1. The “Fleetline” Challenge (Week 3)

» A real problem from a YC startup (Who are giving us a guest lecture).

» Problem: You must assign truck drivers to loads to maximize revenue while
respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).

2. SMT for Scheduling (Week 9)
» Solve very complex Puzzles beyond most humans reach using SMT solvers.
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Projects |: Optimization & Logic

v

A real problem from a YC startup (Who are giving us a guest lecture).

Problem: You must assign truck drivers to loads to maximize revenue while
respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).

v

\4

Solve very complex Puzzles beyond most humans reach using SMT solvers.
Learn to encode massive real-world scheduling conflicts into SMT Solvers (z3).

v
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Projects Il: Al & Neurosymbolic Agents
3. Evolution & Gradients (Week 6-7)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering



Projects Il: Al & Neurosymbolic Agents

3. Evolution & Gradients (Week 6-7)

» Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.
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Projects Il: Al & Neurosymbolic Agents

3. Evolution & Gradients (Week 6-7)
» Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.
» Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.
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Projects Il: Al & Neurosymbolic Agents

3. Evolution & Gradients (Week 6-7)
» Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.
» Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

4. Data-Driven Pipelines (Week 11)
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Projects Il: Al & Neurosymbolic Agents

» Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

» Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

Build end-to-end ML pipelines (feature engineering, regression) to predict real-world

parameters (e.g., housing prices) and integrate them directly into optimization
objectives.
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Projects Il: Al & Neurosymbolic Agents

» Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

» Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

Build end-to-end ML pipelines (feature engineering, regression) to predict real-world

parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

Build a neurosymbolic reasoning agent to solve Math Olympiad (AIME) problems.
You will engineer prompts, implement self-consistency checks, and use open-source
LLMs to tackle high-level reasoning tasks.
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0 Course Logistics

@ Prerequisites

e History of Linear Programming
© Linear Programming: The Basics
0 The Engineer’s Diet Dilemma

e Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

14/53



Prerequisites

1. Theory
@ CS 374 is assumed.

@ We won'’t reteach NP-Hardness; we
assume you know what it implies.
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Prerequisites
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@ CS 374 is assumed.

@ We won'’t reteach NP-Hardness; we
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2. Attitude
@ Coding Heavy: This is an
engineering class.
@ Resilience: You must be willing to
read documentation, debug strange
library errors, and explore new tools.
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Prerequisites

1. Theory
@ CS 374 is assumed.

@ We won'’t reteach NP-Hardness; we
assume you know what it implies.

2. Attitude

@ Coding Heavy: This is an
engineering class.

@ Resilience: You must be willing to
read documentation, debug strange
library errors, and explore new tools.

3. Coding

Python Literacy Check

import numpy as np

A = np.array([[1, 21, [3, 41D)
b = np.array([5, 61)

# If you know what this does

x = np.linalg.solve(A, b)

+H+

or can look it up quick
...you're Gucci.

++
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0 Course Logistics

@ Grading

Q History of Linear Programming
© Linear Programming: The Basics
0 The Engineer’s Diet Dilemma

e Interpreting and Debugging Gurobi Output
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Grading Structure

@ Groups of 2-4.

@ The more, the
merrier.

@ High volume of
problems; working
alone is a competitive
disadvantage.

01/20/2026 17/53
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Grading Structure

@ Groups of 2-4. @ After Parts I, II, Ill.

@ The more, the @ In-class, short,
merrier. individual quizzes.

@ High volume of @ Goal: Check if you
problems; working are alive.
alone is a competitive @ If you understand the
disadvantage. bare minimum, you

get 100%.
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Grading Structure

S ——

@ Groups of 2-4. @ After Parts I, II, Ill.

@ The more, the @ In-class, short,
merrier. individual quizzes.

@ High volume of @ Goal: Check if you
problems; working are alive.
alone is a competitive @ If you understand the
disadvantage. bare minimum, you

get 100%.
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@ Algorithmic
Engineering.

@ Build a system,
implement a paper,
or optimize a
complex pipeline.

@ Compare
performance
(speed/quality).
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0 Course Logistics

@ LLM Usage Policy
e History of Linear Programming
© Linear Programming: The Basics
0 The Engineer’s Diet Dilemma

e Interpreting and Debugging Gurobi Output
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LLM Usage Policy: “Productivity, not Replacement”

The Rule:
@ You CAN use LLMs (ChatGPT, Gemini, Claude, Copilot).
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LLM Usage Policy: “Productivity, not Replacement”

The Rule:
@ You CAN use LLMs (ChatGPT, Gemini, Claude, Copilot).

@ You MUST acknowledge usage and explain exactly what you asked the LLM
to do.
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LLM Usage Policy: “Productivity, not Replacement”

The Rule:
@ You CAN use LLMs (ChatGPT, Gemini, Claude, Copilot).

@ You MUST acknowledge usage and explain exactly what you asked the LLM
to do.

The “Random Audit”:

@ Each week, random students will be asked to explain their code/solutions
in person.
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LLM Usage Policy: “Productivity, not Replacement”

The Rule:
@ You CAN use LLMs (ChatGPT, Gemini, Claude, Copilot).

@ You MUST acknowledge usage and explain exactly what you asked the LLM
to do.

@ Each week, random students will be asked to explain their code/solutions
in person.

@ If you blind-copied without understanding — Big Problems.
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LLM Usage Policy: “Productivity, not Replacement”

Kosher vs. Not Kosher
v Good:

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering



LLM Usage Policy: “Productivity, not Replacement”
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Please implement my idea in Python.”
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LLM Usage Policy: “Productivity, not Replacement”

Kosher vs. Not Kosher
v Good:

@ “Write a Python function to parse this DIMACS file format.”

@ “Here is an Algorithm to solve this problem ... Encode the constraint this way ...

Please implement my idea in Python.”

X Bad:
“Here is the PDF of the homework, solve Problem 3 for me.”
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Questions?
Ready to build?
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Q History of Linear Programming
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The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).
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The Toy Factory Example
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@ Metal: Have 10kg. Widget uses 1,
Gadget uses 2.
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The Toy Factory Example
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Profits:
@ Widget: $3 profit
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Constraints:
@ Metal: Have 10kg. Widget uses 1,
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The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).
Profits: The LP Model:

@ Widget: $3 profit
@ Gadget: $4 profit
Constraints:
@ Metal: Have 10kg. Widget uses 1,
Gadget uses 2.
@ Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

max 3X1 + 4X2
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The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).

Profits: The LP Model:

@ Widget: $3 profit max 33X + 4X»

@ Gadget: $4 profit st 1x +2x <10
Constraints:

@ Metal: Have 10kg. Widget uses 1,
Gadget uses 2.

@ Wood: Have 15kg. Widget uses 2,
Gadget uses 1.
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The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).

Profits: The LP Model:

@ Widget: $3 profit max 3% + 4%,

@ Gadget: $4 profit st 1x1 4+ 2x < 10
Constraints: 2x; +1x < 15

@ Metal: Have 10kg. Widget uses 1,
Gadget uses 2.

@ Wood: Have 15kg. Widget uses 2,
Gadget uses 1.
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The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).

Profits: The LP Model:
@ Widget: $3 profi.t max 3% + 4%,
@ Gadget: $4 profit st 1x1 4+ 2x < 10
Constraints: 2x1 +1x < 15
@ Metal: Have 10kg. Widget uses 1, X1, X2 > 0

Gadget uses 2.

@ Wood: Have 15kg. Widget uses 2,
Gadget uses 1.
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Act |: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical
equation was unknown.
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Act |: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical
equation was unknown.

@ Fourier (1823): Solved small systems of
inequalities.

@ Leonid Kantorovich (1939): Invented LP in
the USSR to optimize plywood production.

@ The Tragedy: The Soviet government
ignored him. His work remained unknown to
the West for decades.
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Act |: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical

equation was unknown. Motzkin's Thesis (1936)
@ Fourier (1823): Solved small systems of Listed only 42 papers in all
inequalities. of history on linear
@ Leonid Kantorovich (1939): Invented LP in  inequalities. Today, there
the USSR to optimize plywood production. are tens of thousands per
@ The Tragedy: The Soviet government year.

ignored him. His work remained unknown to
the West for decades.
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Act Il: WWII & George Dantzig

The Setup:
@ George Dantzig spent WWII planning US Air Force logistics by hand.
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The Setup:
@ George Dantzig spent WWII planning US Air Force logistics by hand.
@ 1946: The Air Force asks: “Can you mechanize the planning process?”

@ He built a dynamic model of resources and activities, but something was
missing.
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The Setup:
@ George Dantzig spent WWII planning US Air Force logistics by hand.
@ 1946: The Air Force asks: “Can you mechanize the planning process?”
@ He built a dynamic model of resources and activities, but something was
missing.
@ Dantzig realized he needed an Explicit Objective Function to optimize on
top of his linear constraints.
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Act Il: WWII & George Dantzig

The Setup:
@ George Dantzig spent WWII planning US Air Force logistics by hand.
@ 1946: The Air Force asks: “Can you mechanize the planning process?”
@ He built a dynamic model of resources and activities, but something was
missing.
@ Dantzig realized he needed an Explicit Objective Function to optimize on
top of his linear constraints.

@ But how to solve a system with thousands of linear constraints and linear
objective? He needed help.
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Act lll: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.
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Act Ill: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.

@ Dantzig starts explaining his Air Force model in tedious detail.
© Von Neumann cuts him off: “Get to the point.”
© Dantzig writes the linear programming problem on the board.
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Act Ill: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.

@ Dantzig starts explaining his Air Force model in tedious detail.
© Von Neumann cuts him off: “Get to the point.”
© Dantzig writes the linear programming problem on the board.

The Revelation

Von Neumann stands up: “Oh—that!”
He proceeds to lecture Dantzig for 90 minutes on Duality and Geometry.
Von Neumann had already derived the theory of LP while inventing Game Theory.
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Act IV: The Mic Drop

Conference, 1948: Dantzig presents LP to a room of heavyweights.
Harold Hotelling (Economics Giant) stands up:
“But we all know the world is non-linear.”
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Harold Hotelling (Economics Giant) stands up:
“But we all know the world is non-linear.”

Dantzig freezes. The room goes silent. Then Von Neumann raises his hand:
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Act IV: The Mic Drop

Conference, 1948: Dantzig presents LP to a room of heavyweights.
Harold Hotelling (Economics Giant) stands up:
“But we all know the world is non-linear.”

Dantzig freezes. The room goes silent. Then Von Neumann raises his hand:

“If the axioms of linear programming fit your problem, use it.
If not, don’t.”

He sat down. The field of Linear Programming was born.

For more historical readings, read “REMINISCENCES ABOUT THE ORIGINS OF
LINEAR PROGRAMMING” by Dantzig himself!
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o Linear Programming: The Basics
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The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).

Profits: The LP Model:
@ Widget: $3 profi.t max 3% + 4%,
@ Gadget: $4 profit st 1x; 4+ 2x < 10
Constraints: 2x1 +1x < 15
@ Metal: Have 10kg. Widget uses 1, X1, X2 > 0

Gadget uses 2.

@ Wood: Have 15kg. Widget uses 2,
Gadget uses 1.
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The Canonical Form
Every LP can be written in Matrix Notation: maxc’x s.t. Ax < b.
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The Canonical Form
Every LP can be written in Matrix Notation: maxc’x s.t. Ax < b.

For our Factory:

3 X1 .
{4 X subject to
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The Canonical Form
Every LP can be written in Matrix Notation: maxc’x s.t. Ax < b.

For our Factory:

. 1 2 10

3 X1 . 2 1 Xq 15

{4 X subject to 10 % < 0

—— 0 —-1|—=~ 0
c’ X X

A b
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The Canonical Form
Every LP can be written in Matrix Notation: maxc’x s.t. Ax < b.

For our Factory:

. 1 2 10
3 X1 . 2 1 Xq 15
{4 Xz] subject to 1 0 XJ < 0
—— 0 —-1|—=~ 0
c’ X X
A b

@ x: Decision Variables (The knobs we turn).
@ c: Objective Coefficients (Profits/Costs).

@ A: Constraint Matrix (Resource usage).

@ b: Right-Hand Side (Capacities).
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Pathologies: When things go wrong

Before we solve it, what if we can’t?
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Pathologies: When things go wrong

Before we solve it, what if we can’t?

1. Infeasibility
No solution satisfies all constraints.

x<2 AND x>3

The feasible region is Empty.
Gurobi: Model is infeasible.

V.
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Pathologies: When things go wrong
Before we solve it, what if we can’t?

2. Unboundedness

The region is open in the direction of
improvement.

1. Infeasibility
No solution satisfies all constraints.

x<2 AND x>3 maxx St. x>5

The feasible region is Empty.

. You can increase profit to oo.
Gurobi: Model is infeasible. P o0

/  Gurobi: Model is unbounded.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 31/53



Geometry: The Feasible Region




Geometry: The Feasible Region

N

Metal (x1 +2x, < 10)




Geometry: The Feasible Region

Metal (x1 +2x, < 10)
Wood (2X1 -+ Xo < 15)




Geometry: The Feasible Region

Metal (x; 4 2x2 < 10)
Wood (2X1 -+ Xo < 15)




Geometry: The Feasible Region

I~
N

Metal (X3 - 2x2 < 10)
s Wood (2x; + Xo < 15)

Proft Direction (3x + 4y = 20) “~_




Geometry: The Feasible Region

I~
N

Metal (X7 <+ 2x, <10)

Proft Direction (3x + 4y = 20) “~_




Geometry: The Feasible Region
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2D

Visualizing the Simplex: Pushing the Profit Line
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3D

3D Optimization: Plane Tangent to Vertex
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The Fundamental Theorem of LP

Theorem

If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.
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The Fundamental Theorem of LP

Theorem

If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):

@ Any point x in the polytope is a weighted average (convex combination) of
the polytope’s vertices vy,..., vk X = > a;v; with > . aj=1,a; > 0.
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@ The objective f(x) = ¢’ x is linear.
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The Fundamental Theorem of LP

Theorem

If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):

@ Any point x in the polytope is a weighted average (convex combination) of
the polytope’s vertices vy,..., vk X = > a;v; with > . aj=1,a; > 0.

@ The objective f(x) = ¢’ x is linear.

© Linearity means f(x) = f(>_, aivi) = >, aif(vi).
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The Fundamental Theorem of LP

Theorem

If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):

@ Any point x in the polytope is a weighted average (convex combination) of
the polytope’s vertices vy,..., vk X = > a;v; with > . aj=1,a; > 0.

@ The objective f(x) = ¢’ x is linear.

© Linearity means f(x) = f(>_, aivi) = >, aif(vi).

© An average cannot be larger than the maximum of its components.
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The Fundamental Theorem of LP

Theorem

If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):
@ Any point x in the polytope is a weighted average (convex combination) of
the polytope’s vertices vy,..., vk X = > a;v; with > . aj=1,a; > 0.
@ The objective f(x) = ¢’ x is linear.
© Linearity means f(x) = f(>_, aivi) = >, aif(vi).
© An average cannot be larger than the maximum of its components.
@ Therefore, f(x) < max; f(v;). The max is at a corner!
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From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.
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from gurobipy import GRB

m = gp.Model("factory”)
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We don’t solve these LPs by hand. We assume the Solver is a black box.

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory”)

# Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36/53



From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory”)

# Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

# Objective
m.setObjective(3*x1 + 4%x2, GRB.MAXIMIZE)
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From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory”)

# Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

# Objective
.setObjective(3*x1 + 4%x2, GRB.MAXIMIZE)

.addConstr(1#x1 + 2%x2 <= 10, "metal")

m

# Constraints

m

m.addConstr(2*x1 + 1%x2 <= 15, "wood")
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From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory”)

# Variables

x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")
# Objective
m.setObjective(3*x1 + 4%x2, GRB.MAXIMIZE)
# Constraints
m
m
m

.addConstr(1#x1 + 2%x2 <= 10, "metal")
.addConstr(2*x1 + 1%x2 <= 15, "wood")

.optimize()
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From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory”)

# Variables

x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")
# Objective

m.setObjective(3*x1 + 4%x2, GRB.MAXIMIZE)
# Constraints
m
m

.addConstr(1#x1 + 2%x2 <= 10, "metal")
.addConstr(2*x1 + 1%x2 <= 15, "wood")

m.optimize()
print(x1.X, x2.X)
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Q The Engineer’s Diet Dilemma
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The Scenario

OptiMeal Inc. has a conflict:
@ Finance Team: “Cut costs! Food is too expensive.”
@ Nutritionists: “We need to meet daily health requirements.”
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The Scenario

OptiMeal Inc. has a conflict:
@ Finance Team: “Cut costs! Food is too expensive.”
@ Nutritionists: “We need to meet daily health requirements.”

Your Mission:
@ Use LP to design the cheapest daily meal plan.
@ You can eat fractional servings (e.g., 0.5 bananas).
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The Scenario

OptiMeal Inc. has a conflict:
@ Finance Team: “Cut costs! Food is too expensive.”
@ Nutritionists: “We need to meet daily health requirements.”

Your Mission:
@ Use LP to design the cheapest daily meal plan.
@ You can eat fractional servings (e.g., 0.5 bananas).
@ Objective: Min Cost.
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The Scenario

OptiMeal Inc. has a conflict:
@ Finance Team: “Cut costs! Food is too expensive.”
@ Nutritionists: “We need to meet daily health requirements.”

Your Mission:
@ Use LP to design the cheapest daily meal plan.
@ You can eat fractional servings (e.g., 0.5 bananas).
@ Objective: Min Cost.
@ Constraints: Calorie floor, Protein floor, Sugar ceiling, etc.
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The Data (Nutrition & Costs)

Food Cost ($) Cal Prot (g) Carb (g) Sugar (g) Fiber (g) Fat (g)
Chicken 1.80 128 24.0 0.0 0.0 0.0 2.7
Banana 0.30 105 1.3 27.0 14.0 31 0.4
Yogurt 090 104 5.9 7.9 7.9 0.0 5.5
Beans 1.10 120 8.0 21.0 1.0 7.0 0.5
Spinach 0.40 7 0.9 11 0.1 0.7 0.1
Almonds 0.70 160 6.0 6.0 1.0 3.0 14.0
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The Data (Nutrition & Costs)

Food Cost ($) Cal Prot (g) Carb (g) Sugar (g) Fiber (g) Fat (g)
Chicken 1.80 128 24.0 0.0 0.0 0.0 2.7
Banana 0.30 105 1.3 27.0 14.0 31 0.4
Yogurt 0.90 104 5.9 7.9 7.9 0.0 55
Beans 1.10 120 8.0 21.0 1.0 7.0 0.5
Spinach 0.40 7 0.9 11 0.1 0.7 0.1
Almonds 0.70 160 6.0 6.0 1.0 3.0 14.0
Requirements:

@ Calories > 2000 @ Sugar < 50¢g

@ Protein > 100g @ Fat < 120g

@ Fiber > 509 @ Sodium < 2300mg
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The Mathematical Model

Let x; be the number of servings of food j. Let ¢; be the cost of food j. Let a; be
the amount of nutrient / in food j.
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The Mathematical Model

Let x; be the number of servings of food j. Let ¢; be the cost of food j. Let a; be
the amount of nutrient / in food j.

mn > X (Minimize Cost)

jeFoods
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The Mathematical Model

Let x; be the number of servings of food j. Let ¢; be the cost of food j. Let a; be
the amount of nutrient / in food j.

mn > X (Minimize Cost)

jeFoods

st. ) Calj-x;, > 2000
J
> Prot-x;, > 100
J

> “Sugar;-x; < 50
j

Xj

v
o
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Implementation in Gurobi

params = {

"Chicken” : { "price": 1.80, "protein": 24.0, "sugar”: ©.0, "..." : "..." 3},
"Banana” : { "price": 0.30, "protein”: 1.3, "sugar”": 14.0, "..." : "..." 3},
"Yogurt” { "price": 0.90, "protein”: 5.9, ‘'sugar": 7.9, "..." :" "3,
"Beans” { "price": 1.10, "protein”: 8.0, "sugar”: 1.0, "..." " "y,

}
foods = list(params.keys())
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Implementation in Gurobi

params = {
"Chicken" : { "price”: 1.80, "protein”: 24.0, "sugar": 0.0, "...
"Banana” : { "price": 0.30, "protein”: 1.3, ‘"sugar”: 14.0, "...
"Yogurt" { "price": 0.90, "protein”: 5.9, '"sugar”: 7.9, "
"Beans” { "price": 1.10, "protein”: 8.0, "sugar”: 1.0, "

}
foods = list(params.keys())

# Variables: x[food]
x = m.addVars(foods, 1b=0.0, name="servings")
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Implementation in Gurobi

params = {
"Chicken” : { "price": 1.80, "protein": 24.0, "sugar”: ©.0, "..." : "..." 3},
"Banana” : { "price": 0.30, "protein”: 1.3, ‘"sugar": 14.0, "..." : "..." 3},
"Yogurt" { "price": 0.90, "protein”: 5.9, 'sugar”: 7.9, "..." :" "3,
"Beans” { "price": 1.10, "protein”: 8.0, "sugar”: 1.0, "..." " "y,

}
foods = list(params.keys())
# Variables: x[food]
x = m.addVars(foods, 1b=0.0, name="servings")
# Objective: Minimize Cost
obj_expr = 0
for food in foods:
obj_expr += params[food]["price"] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)
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Implementation in Gurobi

params = {
"Chicken” : { "price": 1.80, "protein": 24.0, "sugar”: ©.0, "..." : "..." 3},
"Banana” : { "price": 0.30, "protein”: 1.3, "sugar”": 14.0, "..." : "..." 3},
"Yogurt” { "price": 0.90, "protein”: 5.9, ‘sugar”": 7.9, "..." :"..." 3},
"Beans” { "price": 1.10, "protein”: 8.0, "sugar”: 1.0, "..." " "3,

}
foods = list(params.keys())
# Variables: x[food]
x = m.addVars(foods, 1b=0.0, name="servings")
# Objective: Minimize Cost
obj_expr = 0
for food in foods:

obj_expr += params[food]["price"] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)
# Constraints (Example: Protein & Sugar)
const_protein = m.addConstr(

gp.quicksum( params[fd]["protein”] * x[fd] for fd in foods) >= 100, "min_protein

)
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Implementation in Gurobi

params = {
"Chicken” : { "price": 1.80, "protein": 24.0, "sugar”: ©.0, "..." : "..." 3},
"Banana” : { "price": 0.30, "protein”: 1.3, "sugar”": 14.0, "..." : "..." 3},
"Yogurt” { "price": 0.90, "protein”: 5.9, ‘sugar”": 7.9, "..." :"..." 3},
"Beans” { "price": 1.10, "protein”: 8.0, "sugar”: 1.0, "..." " "3,

}
foods = list(params.keys())
# Variables: x[food]
x = m.addVars(foods, 1b=0.0, name="servings")
# Objective: Minimize Cost
obj_expr = 0
for food in foods:
obj_expr += params[food]["price”] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)
# Constraints (Example: Protein & Sugar)
const_protein = m.addConstr(
gp.quicksum( params[fd]["protein”] * x[fd] for fd in foods) >= 100, "min_protein”
)

const_sugar = m.addConstr(gp.quicksum(params[food]["sugar"] #* x[i] for i in foods) <= 50, "max_sugar")
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Implementation in Gurobi

params = {
"Chicken” : { "price": 1.80, "protein": 24.0, "sugar”: ©.0, "..." : "..." 3},
"Banana” : { "price": 0.30, "protein”: 1.3, "sugar”": 14.0, "..." : "..." 3},
"Yogurt” { "price": 0.90, "protein”: 5.9, ‘sugar”": 7.9, "..." :"..." 3},
"Beans” { "price": 1.10, "protein”: 8.0, "sugar”: 1.0, "..." " "3,

}
foods = list(params.keys())
# Variables: x[food]
x = m.addVars(foods, 1b=0.0, name="servings")
# Objective: Minimize Cost
obj_expr = 0
for food in foods:

obj_expr += params[food]["price”] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)
# Constraints (Example: Protein & Sugar)
const_protein = m.addConstr(

gp.quicksum( params[fd]["protein”] * x[fd] for fd in foods) >= 100, "min_protein”

)
const_sugar = m.addConstr(gp.quicksum(params[food]["sugar"] #* x[i] for i in foods) <= 50, "max_sugar")
# ... rest of the requirements ...

m.optimize()
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Q Interpreting and Debugging Gurobi Output
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Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

@ m.Status: Did it work?
(2=0pt, 3=Infeas, 5=Unbdd)
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Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

@ m.Status: Did it work?
(2=0pt, 3=Infeas, 5=Unbdd)

@ m.ObjVal: The total profit/cost (2).
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Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

@ m.Status: Did it work?
(2=0pt, 3=Infeas, 5=Unbdd)

@ m.ObjVal: The total profit/cost (Z).

Variable Attributes:

@ var.X: The optimal value
(x; = 6.66).
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Reading the Tea Leaves (Gurobi Output)

When you run m.optimize(), Gurobi populates attributes on the objects.

Model Attributes:

@ m.Status: Did it work?
(2=0pt, 3=Infeas, 5=Unbdd)
@ m.ObjVal: The total profit/cost (Z).

Variable Attributes:

@ var.X: The optimal value
(x; = 6.66).

@ var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).
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Reading the Tea Leaves (Gurobi Output)

When you run m.optimize(), Gurobi populates attributes on the objects.

Model Attributes: Constraint Attributes:
@ m.Status: Did it work? @ constr.Slack: Difference
(2=0Opt, 3=Infeas, 5=Unbdd) between LHS and RHS.

@ m.ObjVal: The total profit/cost (Z).

Variable Attributes:

@ var.X: The optimal value
(x; = 6.66).

@ var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).
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Reading the Tea Leaves (Gurobi Output)

When you run m.optimize(), Gurobi populates attributes on the objects.

Model Attributes: Constraint Attributes:
@ m.Status: Did it work? @ constr.Slack: Difference
(2=0pt, 3=Infeas, 5=Unbdd) between LHS and RHS.
@ m.ObjVal: The total profit/cost (Z). @ constr.Pi (7w): Shadow Price.

. . “If  had 1 more unit of Metal,
Variable Attributes: how much more profit would |
@ var.X: The optimal value make?”. More on this next
(X1 = 6.66). week!
@ var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).
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Reading the Tea Leaves (Gurobi Output)

When you run m.optimize(), Gurobi populates attributes on the objects.

Model Attributes: Constraint Attributes:
@ m.Status: Did it work? @ constr.Slack: Difference
(2=0pt, 3=Infeas, 5=Unbdd) between LHS and RHS.
@ m.ObjVal: The total profit/cost (Z). @ constr.Pi (7w): Shadow Price.

“If | had 1 more unit of Metal,

Variable Attributes: how much more profit would |

@ var.X: The optimal value make?”. More on this next
(x; = 6.66). week!

@ var.RC: Reduced Cost. How much :
the objective coefficient must Warning
improve before this variable Attributes like .X and .Pi are only
becomes non-zero (More next available if m.Status == 2 (Optimal).
week). Always check status first!

= - =

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43/53



Infeasibility Diagnosis

import gurobipy as gp
import gurobipy

gp.Model("Infeasible")

= m.addVar(name="x")
_setObjective(-1*x, gp.GRB.MAXIMIZE)
.addConstr(x>=3)

.addConstr(x<=2)

.optimize()

print("Optimize status:”, m.Status)

3 3 3 3 X 3
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Infeasibility Diagnosis

import gurobipy as gp
import gurobipy Gurobi Optimizer version 12.0.3 build v12.0.3rc@ (mac64[arm]

- Darwin 23.1.0 23B2073)

m = gp.Model("Infeasible")
x = m.addVar(name="x") CPU model: Apple M3 Max
m.setObjective(-1xx, gp.GRB.MAXIMIZE) Thread count: 14 physical cores, 14 logical processors, using up to 14 threa
m.addConstr(x>=3)
m.addConstr(x<=2) Optimize a model with 2 rows, 1 columns and 2 nonzeros
m.optimize() Model fingerprint: @xf5b@6d2b
print("Optimize status:", m.Status) Coefficient statistics:
Matrix range [1e+00, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, Qe+00]
RHS range [2e+00, 3e+00]

Presolve time: 0.00s

Solved in @ iterations and 0.00 seconds (0.00 work units)
Infeasible model
Optimize status: 3
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What about Larger Models?

import gurobipy as gp
m = gp.Model("TrickyInfeasible")
# Variables

x = m.addVar(lb=-0, ub=8, name="x")
y = m.addVar(lb=-0, ub=8, name="y")

Chandra Chekuri & Elfarouk Harb (UIUC)
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What about Larger Models?

import gurobipy as gp
m = gp.Model("TrickyInfeasible")

Variables
= m.addVar(lb=-0, ub=8, name="x")
= m.addVar(lb=-0, ub=8, name="y")

Arbitrary bounded objective
.setObjective(x + y, gp.GRB.MINIMIZE)

3 #H# < X #=*
|
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What about Larger Models?

import gurobipy as gp

m

3 #H# < X #=*

= gp.Model("TrickyInfeasible")
Variables

= m.addVar(lb=-0, ub=8, name="x")

= m.addVar(lb=-0, ub=8, name="y")
Arbitrary bounded objective
_setObjective(x + y, gp.GRB.MINIMIZE)

#Constraints

m.
.addConstr(x + 2*y <= 4, name="c2_budget2")

m
m
m
m

addConstr(2*x + y <= 4, name="c1_budget1")

.addConstr(x +y >= 5, name="c3_demand")
.addConstr(x <= 8, name="c4_x_cap")
.addConstr(y <= 8, name="c5_y_cap”)
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What about Larger Models?

import gurobipy as gp
m = gp.Model("TrickyInfeasible")

Variables

= m.addVar(lb=-0, ub=8, name="x")

= m.addVar(lb=-0, ub=8, name="y")
Arbitrary bounded objective
m.setObjective(x + y, gp.GRB.MINIMIZE)

#Constraints

m.addConstr(2*x + y <= 4, name="c1_budget1")
m.addConstr(x + 2xy <= 4, name="c2_budget2")
m
m

H < X FH
|

.addConstr(x +y >= 5, name="c3_demand")
.addConstr(x <= 8, name="c4_x_cap")
m.addConstr(y <= 8, name="c5_y_cap”)

m.optimize()
print("Optimize status:"”, m.Status)
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What about Larger Models?

import gurobipy as gp
m = gp.Model("TrickyInfeasible")

Variables
= m.addVar(lb=-0, ub=8, name="x")
= m.addVar(1lb=-0, ub=8, name="y")

Arbitrary bounded objective
m.setObjective(x + y, gp.GRB.MINIMIZE)

#Constraints

.addConstr(2*x + y <= 4, name="c1_budget1")
.addConstr(x + 2*y <= 4, name="c2_budget2")
.addConstr(x +y >= 5, name="c3_demand")
.addConstr(x <= 8, name="c4_x_cap")
m.addConstr(y <= 8, name="c5_y_cap”)

H < X FH
|

3 3 3 3

m.optimize()
print("Optimize status:”, m.Status)

Chandra Chekuri & Elfarouk Harb (UIUC)
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Optimize a model with 5 rows, 2 columns and 8 nonzeros
Model fingerprint: 0x@0fc1d77
Coefficient statistics:

Matrix range [1e+00, 2e+00]
Objective range [1e+00, 1e+00]
Bounds range [8e+00, 8e+00]
RHS range [4e+00, 8e+00]

Presolve removed 2 rows and @ columns
Presolve time: 0.01s

Solved in @ iterations and .01 seconds (0.00 work units)

Infeasible model
Optimize status: 3
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Irreducible Infeasible Subsystem (11S)

What is an 1IS?

@ When a model is infeasible, the full set of constraints cannot all be satisfied
simultaneously.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 46/53



Irreducible Infeasible Subsystem (11S)

What is an 1IS?

@ When a model is infeasible, the full set of constraints cannot all be satisfied
simultaneously.

@ An lIS is a minimal subset of constraints and bounds that is still infeasible.
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Irreducible Infeasible Subsystem (11S)

What is an 1IS?

@ When a model is infeasible, the full set of constraints cannot all be satisfied
simultaneously.

@ An IS is a minimal subset of constraints and bounds that is still infeasible.
@ “Minimal” = removing any constraint from that subset makes it feasible again.
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Irreducible Infeasible Subsystem (11S)

What is an 1IS?

@ When a model is infeasible, the full set of constraints cannot all be satisfied
simultaneously.

@ An IS is a minimal subset of constraints and bounds that is still infeasible.
@ “Minimal” = removing any constraint from that subset makes it feasible again.
@ |ISs help pinpoint the true source of infeasibility in large models.

Good News
Gurobi can compute an IIS for you automatically!
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Computing an IIS in Gurobi

If the model is infeasible, we can ask Gurobi to identify the conflicting constraints.
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Computing an IIS in Gurobi

If the model is infeasible, we can ask Gurobi to identify the conflicting constraints.

if m.Status == GRB.INFEASIBLE:
print("\nModel is infeasible; computing IIS...")
m.computeIIS()

print("Constraints in the IIS:")
for ¢ in m.getConstrs():
if c.IISConstr: # True if part of the IIS
print(f" {c.ConstrName}")
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Example |IS Output

Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf.

Time
0 0.0000000e+00 2.5 +00 0.

+00 Qs

14

IIS computed: 3 constraints and © bounds

IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:

c1_budget1
c2_budget2
c3_demand
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Example |IS Output

Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf.

Time
0 0.0000000e+00  2.500000e+00  ©.000000e+00

0s

IIS computed: 3 constraints and © bounds

IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:

c1_budget1
c2_budget2
c3_demand

@ Remember, these constraints correspond to 2x + y < 4, x + 2y < 4, and
x + y > 5. Adding the first 2 inequalities contradicts the third.
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Example |IS Output

Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00  2.500000e+00  ©.000000e+00 0s

IIS computed: 3 constraints and © bounds

IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:

c1_budget1
c2_budget2
c3_demand

@ Remember, these constraints correspond to 2x + y < 4, x + 2y < 4, and
x + y > 5. Adding the first 2 inequalities contradicts the third.
@ These are the minimal conflicting constraints.
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Example 1IS Output

Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf.

Time
Q 0.0000000e+00 2.500000e+00 0.000000e+00

0s

IIS computed: 3 constraints and © bounds

IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:

c1_budget1
c2_budget2
c3_demand

@ Remember, these constraints correspond to 2x + y < 4, x + 2y < 4, and
X + y > 5. Adding the first 2 inequalities contradicts the third.
@ These are the minimal conflicting constraints.

@ Removing any one of them would make the model feasible.
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Example 1IS Output

Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf.

Time
Q 0.0000000e+00 2.500000e+00 0.000000e+00

0s

IIS computed: 3 constraints and © bounds

IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:

c1_budget1
c2_budget2
c3_demand

@ Remember, these constraints correspond to 2x + y < 4, x + 2y < 4, and
X + y > 5. Adding the first 2 inequalities contradicts the third.

@ These are the minimal conflicting constraints.

@ Removing any one of them would make the model feasible.

@ Great for isolating modeling mistakes in large LPs/MIPs.

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering 01/20/2026 48/53



Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.
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Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.
Gurobi not only detects unboundedness, it returns an unbounded ray.

@ An unbounded ray is a vector d such that:
X + A\d is feasible for all A > 0

and the objective coefficient ¢"d > 0 (for maximization).
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Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.
Gurobi not only detects unboundedness, it returns an unbounded ray.

@ An unbounded ray is a vector d such that:
X + A\d is feasible for all A > 0

and the objective coefficient ¢"d > 0 (for maximization).
@ Gurobi provides this via the attribute:

var .UnbdRay
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Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.
Gurobi not only detects unboundedness, it returns an unbounded ray.

@ An unbounded ray is a vector d such that:
X + A\d is feasible for all A > 0

and the objective coefficient ¢"d > 0 (for maximization).
@ Gurobi provides this via the attribute:
var .UnbdRay

@ Nonzero components of the ray indicate which variables “run off to infinity.”
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Unbounded LPs and Infinite Directions

Unbounded LP = The objective can grow without limit while staying feasible.
Gurobi not only detects unboundedness, it returns an unbounded ray.
@ An unbounded ray is a vector d such that:

X + \d is feasible forall A > 0

and the objective coefficient ¢"d > 0 (for maximization).
@ Gurobi provides this via the attribute:

var .UnbdRay

@ Nonzero components of the ray indicate which variables “run off to infinity.”

Interpretation
The unbounded ray shows how the LP escapes to infinity.

- = = = S Re
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Example of an Unbounded LP?

Example (Maximization):

max X + y
st.x—y>1
X,y >0
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Example of an Unbounded LP?

Example (Maximization):
@ Feasible region goes to cc.
@ Objective increases without

st.x—y>1 bound.
@ No vertex optimum exists.

max X + y

X,y >0
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Geometry of the Unbounded Ray

Y o From the feasible point (1,0) we
can move along (x,y) =
(1,0) + A(1,1) = (1 + X\, ), A >0.

Feasible region:

X_y217 XZOa YZO
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Geometry of the Unbounded Ray

y @ From the feasible point (1,0) we
can move along (x, y) =
1,0+ 21, 1)) =1+ X)), A>0.
@ The objective x + y grows without
bound:
1+2\ — o0.

Feasible region:

X_y217 XZOa YZO
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Geometry of the Unbounded Ray

y @ From the feasible point (1,0) we
can move along (x, y) =
1,0+ 21, 1)) =1+ X)), A>0.
@ The objective x + y grows without
bound:
1+2\ — o0.

@ Gurobi’s UnbdRay returns this
Feasible region: direction.

X_y217 XZOa YZO
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Gurobi Example: Unbounded Model + Ray

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("Unbounded")

X = m.addVar(1lb=0, name="x")

y = m.addVar(1lb=0, name="y")
m.setObjective(x + y, GRB.MAXIMIZE)
m.addConstr(x - y >= 1, name="c1_skew")
# KEY: ask Gurobi to compute ray info
m.setParam(GRB.Param. InfUnbdInfo, 1)
m.optimize()
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Gurobi Example: Unbounded Model + Ray

import gurobipy as gp
from gurobipy import GRB

gp.Model("Unbounded™)
m.addVar(1b=0, name="x")

= m.addVar(1lb=0, name="y")
.setObjective(x + y, GRB.MAXIMIZE)
.addConstr(x - y >= 1, name="c1_skew")
KEY: ask Gurobi to compute ray info
.setParam(GRB.Param. InfUnbdInfo, 1)
m.optimize()

3 #3 3K X 3

print("Status:"”, m.Status)
if m.Status == GRB.UNBOUNDED:
print("\nUnbounded Ray:")
for v in m.getVars():
print(f”"{v.VarName}: {v.UnbdRay}")
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Gurobi Example: Unbounded Model + Ray

import gurobipy as gp
from gurobipy import GRB Status: 5

3 #3 3K X 3

gp.Model("Unbounded™) Unbounded Ray:
m.addVar (1b=0, name="x") x: 1.0
= m.addVar(1b=0, name="y") y: 1.0

.setObjective(x + y, GRB.MAXIMIZE)
.addConstr(x - y >= 1, name="c1_skew")

KEY: ask Gurobi to compute ray info

.setParam(GRB.Param. InfUnbdInfo, 1)
m.

optimize()

print("Status:"”, m.Status)

if m.Status == GRB.UNBOUNDED:

print("\nUnbounded Ray:")

for v in m.getVars():
print(f”"{v.VarName}: {v.UnbdRay}")
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Gurobi Example: Unbounded Model + Ray

import gurobipy as gp

from gurobipy import GRB Status: 5

m = gp.Model("Unbounded”) Unbounded Ray:

x = m.addVar(1lb=0, name="x") x: 1.0

y = m.addVar(1lb=0, name="y") y: 1.0

m.setObjective(x + y, GRB.MAXIMIZE)

m.addConstr(x - y >= 1, name="c1_skew")

# KEY: ask Gurobi to compute ray info ) The I’ay (1, 1) means bOth X and y
m.setl.’arjam(GRB.Param.InfUndenFo, D) can increase |ndef|n|te|y

m.optimize()

print("Status:”, m.Status) @ The constraint x — y > 1 stays

if m.Status == GRB.UNBOUNDED:

print(”\nUnbounded Ray:") S&tleled for a”

for v in m.getVars(): (X, y) = (170) + )‘(17 1)

print(f”{v.VarName}: {v.UnbdRay}")

@ Objective grows as x + y — +oo.
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TODOs after Lecture.

@ Install Gurobi: Get your academic license working.
@ Code and Solve The Diet Problem in HW1.

@ Use Tools like m.computeIIS() and var.UnbdRay to find the conflict in toy
infeasible models and unbounded models.
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