CS498: Algorithmic Engineering

Lecture 1

Chandra Chekuri & Elfarouk Harb

University of lllinois Urbana-Champaign

01/20/2026

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

1/53

Outline

0 Course Logistics
@ Differences from CS374 and CS473
@ Content and Types of Projects in Class
@ Prerequisites
@ Grading
@ LLM Usage Policy

e History of Linear Programming

e Linear Programming: The Basics

0 The Engineer’s Diet Dilemma

e Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

2/53

0 Course Logistics
@ Differences from CS374 and CS473

e History of Linear Programming
© Linear Programming: The Basics
0 The Engineer’s Diet Dilemma

e Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

3/53

From Proofs to Solvers

ra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 4/53

From Proofs to Solvers

While standard algorithms courses focus on proving
what is computable,
this course focuses on implementing what is necessary.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 4/53

Relation to CS 374

CS 374: The Vocabulary

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Relation to CS 374

CS 374: The Vocabulary

@ Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5/53

Relation to CS 374

CS 374: The Vocabulary

@ Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.

@ Goal: Determine theoretical
tractability (P vs NP).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5/53

Relation to CS 374

CS 374: The Vocabulary

@ Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.

@ Goal: Determine theoretical
tractability (P vs NP).

@ Output: A formal proof.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5/53

Relation to CS 374

CS 374: The Vocabulary

@ Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.

@ Goal: Determine theoretical
tractability (P vs NP).

@ Output: A formal proof.

@ Example Concept:

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5/53

Relation to CS 374

CS 374: The Vocabulary CS 498: The Application

@ Focuses on Reductions: @ Focuses on Modelling:
Transforming Problem A to B to Transforming Problem A to B so
prove either tractability (e.g. a solver for B can handle it.

problem is P) or hardness.

@ Goal: Determine theoretical
tractability (P vs NP).

@ Output: A formal proof.
@ Example Concept:

v

= - - =

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5/53

Relation to CS 374

CS 374: The Vocabulary CS 498: The Application

@ Focuses on Reductions: @ Focuses on Modelling:
Transforming Problem A to B to Transforming Problem A to B so
prove either tractability (e.g. a solver for B can handle it.
problem is P) or hardness. @ Goal: Practical solutions for

@ Goal: Determine theoretical real-world instances.

tractability (P vs NP).
@ Output: A formal proof.
@ Example Concept:

-~ v

= - - =

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 5/53

Relation to CS 374

CS 374: The Vocabulary

@ Focuses on Reductions:
Transforming Problem A to B to
prove either tractability (e.g.
problem is P) or hardness.

@ Goal: Determine theoretical
tractability (P vs NP).

@ Output: A formal proof.
@ Example Concept:

v

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

CS 498: The Application

@ Focuses on Modelling:
Transforming Problem A to B so
a solver for B can handle it.

@ Goal: Practical solutions for
real-world instances.

@ Output: A Python script or
implementation of an Algorithm
to solve the problem.

o

01/20/2026

5/53

Relation to CS 374

CS 374: The Vocabulary CS 498: The Application
@ Focuses on Reductions: @ Focuses on Modelling:
Transforming Problem A to B to Transforming Problem A to B so
prove either tractability (e.g. a solver for B can handle it.
problem is P) or hardness. @ Goal: Practical solutions for
@ Goal: Determine theoretical real-world instances.
tractability (P vs NP). @ Output: A Python script or
@ Output: A formal proof. implementation of an Algorithm
Y Examp'e Concept: to solve the pr0b|em.
@ Example Concept:

= s =

Chandra Chekuri & Elfarouk Harb (UIUC) 01/20/2026 5/53

Relation to CS 473

@ CS 473 analyzes the internal mathematics of the engine.

@ Advanced algorithmic techniques (example: randomization, flow,
advanced dynamic programming).

@ Focus on proving efficiency (run-time) and approximation gurantees
(bounds).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 6/53

Relation to CS 473

@ CS 473 analyzes the internal mathematics of the engine.

@ Advanced algorithmic techniques (example: randomization, flow,
advanced dynamic programming).

@ Focus on proving efficiency (run-time) and approximation gurantees
(bounds).

@ CS 498 teaches you how to drive the car.

@ We treat powerful solvers, that researchers have spent decades
working on, as black boxes to be mastered.

@ Focus on modeling complex constraints rather than implementing the
solver itself.

@ We still explain the theory behind the solvers, but the focus is on
basics of theory

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 6/53

The “NP-Hard” Perspective

CS 374: "Stop”

Proving a problem is
NP-Hard is the end of the
conversation. It means an

efficient worst-case

algorithm does not
exist.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 7/53

The “NP-Hard” Perspective

CS 374: ”Stop”

Proving a problem is
NP-Hard is the end of the
conversation. It means an

efficient worst-case

algorithm does not
exist.

CS 473: "Detour”

Accept that exact
provable solutions are
impossible. Pivot to
designing algorithms that
provide guaranteed
approximations.

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

01/20/2026

7/53

The “NP-Hard” Perspective

CS 374: ”Stop”

Proving a problem is
NP-Hard is the end of the
conversation. It means an

efficient worst-case

algorithm does not
exist.

CS 473: "Detour”

Accept that exact
provable solutions are
impossible. Pivot to
designing algorithms that
provide guaranteed
approximations.

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

CS 498: "Launch”

NP-Hardness is a
worst-case warning, not a
law of physics. Use
SAT/SMT solvers to
crush real-world
instances. No more
Grantees.

01/20/2026 7/53

Modern Tooling Stack

We move beyond “pseudocode” to industrial-grade Python libraries used in
Operations Research and Deep Learning.

@ Optimization:
, (Linear & Integer Programming)

@ Logic & Verification:
, (SMT & SAT Solvers)

@ Differentiation:
(Autograd & Neural Networks)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

8/53

Course Comparison Matrix

Feature CS 374 /473

CS 498

Primary Goal Proofs & Analysis

Hardness Prove it's impossible in
worst case

Key Tools Pencil, Paper, LaTeX

Style Purely Theoretical

Models & Implementations

Use solvers to solve your
instance anyway

Gurobi, Z3, PyTorch, ...

Hybrid (Basics of Theory +
Implementation)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026 9/53

0 Course Logistics

@ Content and Types of Projects in Class

e History of Linear Programming
© Linear Programming: The Basics
Q The Engineer’s Diet Dilemma

e Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

10/53

Content and Types of Projects in Class
Part I: Discrete Optimization

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Content and Types of Projects in Class
Part I: Discrete Optimization
@ Linear & Integer Programming

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Content and Types of Projects in Class
Part I: Discrete Optimization
@ Linear & Integer Programming
@ Modeling with Gurobi

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Content and Types of Projects in Class
Part I: Discrete Optimization
@ Linear & Integer Programming
@ Modeling with Gurobi
@ Supply chain & Network models

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

11/53

Content and Types of Projects in Class
Part I: Discrete Optimization
@ Linear & Integer Programming
@ Modeling with Gurobi
@ Supply chain & Network models

Part Il: Differentiable Systems

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Content and Types of Projects in Class
Part I: Discrete Optimization
@ Linear & Integer Programming
@ Modeling with Gurobi
@ Supply chain & Network models

Part Il: Differentiable Systems

@ First order and Second Order
Optimization Techniques

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

11/53

Content and Types of Projects in Class
Part I: Discrete Optimization
@ Linear & Integer Programming
@ Modeling with Gurobi
@ Supply chain & Network models

Part Il: Differentiable Systems

@ First order and Second Order
Optimization Techniques

@ Genetic Algorithms and
Metaheuristics.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11/53

Content and Types of Projects in Class
Part I: Discrete Optimization
@ Linear & Integer Programming
@ Modeling with Gurobi
@ Supply chain & Network models

Part Il: Differentiable Systems

@ First order and Second Order
Optimization Techniques

@ Genetic Algorithms and
Metaheuristics.

@ PyTorch & Autograd internals

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11/53

Content and Types of Projects in Class
Part I: Discrete Optimization
@ Linear & Integer Programming
@ Modeling with Gurobi
@ Supply chain & Network models

Part Il: Differentiable Systems
@ First order and Second Order
Optimization Techniques
@ Genetic Algorithms and
Metaheuristics.

@ PyTorch & Autograd internals

@ Convex and Non-convex
optimization

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11/53

Content and Types of Projects in Class
Part |: Discrete Optimization Part lll: Formal Methods
@ Linear & Integer Programming
@ Modeling with Gurobi
@ Supply chain & Network models

Part Il: Differentiable Systems
@ First order and Second Order
Optimization Techniques
@ Genetic Algorithms and
Metaheuristics.

@ PyTorch & Autograd internals

@ Convex and Non-convex
optimization

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11/53

Content and Types of Projects in Class
Part |: Discrete Optimization Part lll: Formal Methods
@ Linear & Integer Programming @ SAT & SMT Solvers (23, PySAT)
@ Modeling with Gurobi
@ Supply chain & Network models

Part Il: Differentiable Systems
@ First order and Second Order
Optimization Techniques
@ Genetic Algorithms and
Metaheuristics.

@ PyTorch & Autograd internals

@ Convex and Non-convex
optimization

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11/53

Content and Types of Projects in Class

Part |: Discrete Optimization Part lll: Formal Methods
@ Linear & Integer Programming @ SAT & SMT Solvers (23, PySAT)
@ Modeling with Gurobi @ Logic encodings (Sudoku,
@ Supply chain & Network models Scheduling)

Part Il: Differentiable Systems
@ First order and Second Order
Optimization Techniques
@ Genetic Algorithms and
Metaheuristics.

@ PyTorch & Autograd internals

@ Convex and Non-convex
optimization

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

11/53

Content and Types of Projects in Class

Part |: Discrete Optimization Part lll: Formal Methods
@ Linear & Integer Programming @ SAT & SMT Solvers (23, PySAT)
@ Modeling with Gurobi @ Logic encodings (Sudoku,
@ Supply chain & Network models Scheduling)
@ Automated verification and Solving
Part Il: Differentiable Systems Puzzles with SAT/SMT Solvers

@ First order and Second Order
Optimization Techniques

@ Genetic Algorithms and
Metaheuristics.

@ PyTorch & Autograd internals

@ Convex and Non-convex
optimization

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11/53

Content and Types of Projects in Class

Part |: Discrete Optimization Part lll: Formal Methods
@ Linear & Integer Programming @ SAT & SMT Solvers (23, PySAT)
@ Modeling with Gurobi @ Logic encodings (Sudoku,
@ Supply chain & Network models Scheduling)
@ Automated verification and Solving
Part Il: Differentiable Systems Puzzles with SAT/SMT Solvers
@ First order and Second Order
Optimization Techniques Parts IV & V: Synthesis
@ Genetic Algorithms and
Metaheuristics.

@ PyTorch & Autograd internals

@ Convex and Non-convex
optimization

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11/53

Content and Types of Projects in Class

Part |: Discrete Optimization Part lll: Formal Methods

@ Linear & Integer Programming @ SAT & SMT Solvers (23, PySAT)

@ Modeling with Gurobi @ Logic encodings (Sudoku,

@ Supply chain & Network models Scheduling)

@ Automated verification and Solving

Part Il: Differentiable Systems Puzzles with SAT/SMT Solvers

@ First order and Second Order

Optimization Techniques Parts IV & V: Synthesis
@ Genetic Algorithms and @ Data-Driven Optimization (aka

Metaheuristics. Data Science)

@ PyTorch & Autograd internals

@ Convex and Non-convex
optimization

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11/53

Content and Types of Projects in Class

@ Linear & Integer Programming @ SAT & SMT Solvers (23, PySAT)
@ Modeling with Gurobi @ Logic encodings (Sudoku,
@ Supply chain & Network models Scheduling)

@ Automated verification and Solving
Puzzles with SAT/SMT Solvers

@ First order and Second Order
Optimization Techniques

@ Genetic Algorithms and @ Data-Driven Optimization (aka
Metaheuristics. Data Science)
@ PyTorch & Autograd internals @ LLMs as Reasoning Engines,

o Convex and Non-convex prompting, consistency, etc.

optimization

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11/53

Content and Types of Projects in Class

@ Linear & Integer Programming @ SAT & SMT Solvers (23, PySAT)
@ Modeling with Gurobi @ Logic encodings (Sudoku,
@ Supply chain & Network models Scheduling)

@ Automated verification and Solving
Puzzles with SAT/SMT Solvers

@ First order and Second Order
Optimization Techniques

@ Genetic Algorithms and @ Data-Driven Optimization (aka
Metaheuristics. Data Science)
@ PyTorch & Autograd internals @ LLMs as Reasoning Engines,

@ Convex and Non-convex prompting, consistency, etc.
optimization @ Program Synthesis.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 11/53

Projects |: Optimization & Logic

1. The “Fleetline” Challenge (Week 3)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Projects |: Optimization & Logic

1. The “Fleetline” Challenge (Week 3)

» A real problem from a YC startup (Who are giving us a guest lecture).

» Problem: You must assign truck drivers to loads to maximize revenue while
respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 12/53

Projects |: Optimization & Logic

1. The “Fleetline” Challenge (Week 3)

» A real problem from a YC startup (Who are giving us a guest lecture).
» Problem: You must assign truck drivers to loads to maximize revenue while
respecting complex human constraints (e.g., “Driver A must be back in Chicago

by Friday for their daughter’s rehearsal”).

2. SMT for Scheduling (Week 9)

01/20/2026 12/53

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Projects |: Optimization & Logic

1. The “Fleetline” Challenge (Week 3)

» A real problem from a YC startup (Who are giving us a guest lecture).

» Problem: You must assign truck drivers to loads to maximize revenue while
respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).

2. SMT for Scheduling (Week 9)
» Solve very complex Puzzles beyond most humans reach using SMT solvers.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 12/53

Projects |: Optimization & Logic

v

A real problem from a YC startup (Who are giving us a guest lecture).

Problem: You must assign truck drivers to loads to maximize revenue while
respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).

v

\4

Solve very complex Puzzles beyond most humans reach using SMT solvers.
Learn to encode massive real-world scheduling conflicts into SMT Solvers (z3).

v

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 12/53

Projects |: Optimization & Logic

v

A real problem from a YC startup (Who are giving us a guest lecture).

Problem: You must assign truck drivers to loads to maximize revenue while
respecting complex human constraints (e.g., “Driver A must be back in Chicago
by Friday for their daughter’s rehearsal”).

v

\4

Solve very complex Puzzles beyond most humans reach using SMT solvers.
Learn to encode massive real-world scheduling conflicts into SMT Solvers (z3).

v

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 12/53

Projects Il: Al & Neurosymbolic Agents
3. Evolution & Gradients (Week 6-7)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Projects Il: Al & Neurosymbolic Agents

3. Evolution & Gradients (Week 6-7)

» Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Projects Il: Al & Neurosymbolic Agents

3. Evolution & Gradients (Week 6-7)
» Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.
» Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13/53

Projects Il: Al & Neurosymbolic Agents

3. Evolution & Gradients (Week 6-7)
» Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.
» Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

4. Data-Driven Pipelines (Week 11)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13/53

Projects Il: Al & Neurosymbolic Agents

» Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

» Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

Build end-to-end ML pipelines (feature engineering, regression) to predict real-world

parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13/53

Projects Il: Al & Neurosymbolic Agents

» Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

» Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

Build end-to-end ML pipelines (feature engineering, regression) to predict real-world

parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13/53

Projects Il: Al & Neurosymbolic Agents

» Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

» Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

Build end-to-end ML pipelines (feature engineering, regression) to predict real-world

parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

Build a neurosymbolic reasoning agent to solve Math Olympiad (AIME) problems.
You will engineer prompts, implement self-consistency checks, and use open-source
LLMs to tackle high-level reasoning tasks.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13/53

Projects Il: Al & Neurosymbolic Agents

» Solve NP-Hard problems (like TSP) using Genetic Algorithms and
Metaheuristics.

» Look under the hood of Deep Learning by building your own Autodiff engine
from scratch before training real neural-nets in PyTorch.

Build end-to-end ML pipelines (feature engineering, regression) to predict real-world

parameters (e.g., housing prices) and integrate them directly into optimization
objectives.

Build a neurosymbolic reasoning agent to solve Math Olympiad (AIME) problems.
You will engineer prompts, implement self-consistency checks, and use open-source
LLMs to tackle high-level reasoning tasks.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 13/53

0 Course Logistics

@ Prerequisites

e History of Linear Programming
© Linear Programming: The Basics
0 The Engineer’s Diet Dilemma

e Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

14/53

Prerequisites

1. Theory
@ CS 374 is assumed.

@ We won'’t reteach NP-Hardness; we
assume you know what it implies.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

15/53

Prerequisites

1. Theory
@ CS 374 is assumed.

@ We won'’t reteach NP-Hardness; we
assume you know what it implies.

2. Attitude
@ Coding Heavy: This is an
engineering class.
@ Resilience: You must be willing to
read documentation, debug strange
library errors, and explore new tools.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

15/53

Prerequisites

1. Theory
@ CS 374 is assumed.

@ We won'’t reteach NP-Hardness; we
assume you know what it implies.

2. Attitude

@ Coding Heavy: This is an
engineering class.

@ Resilience: You must be willing to
read documentation, debug strange
library errors, and explore new tools.

3. Coding

Python Literacy Check

import numpy as np

A = np.array([[1, 21, [3, 41D)
b = np.array([5, 61)

If you know what this does

x = np.linalg.solve(A, b)

+H+

or can look it up quick
...you're Gucci.

++

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

15/53

0 Course Logistics

@ Grading

Q History of Linear Programming
© Linear Programming: The Basics
0 The Engineer’s Diet Dilemma

e Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

16/53

Grading Structure

@ Groups of 2-4.

@ The more, the
merrier.

@ High volume of
problems; working
alone is a competitive
disadvantage.

01/20/2026 17/53

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Grading Structure

@ Groups of 2-4. @ After Parts I, II, Ill.

@ The more, the @ In-class, short,
merrier. individual quizzes.

@ High volume of @ Goal: Check if you
problems; working are alive.
alone is a competitive @ If you understand the
disadvantage. bare minimum, you

get 100%.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 17/53

Grading Structure

S ——

@ Groups of 2-4. @ After Parts I, II, Ill.

@ The more, the @ In-class, short,
merrier. individual quizzes.

@ High volume of @ Goal: Check if you
problems; working are alive.
alone is a competitive @ If you understand the
disadvantage. bare minimum, you

get 100%.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

@ Algorithmic
Engineering.

@ Build a system,
implement a paper,
or optimize a
complex pipeline.

@ Compare
performance
(speed/quality).

01/20/2026 17/53

0 Course Logistics

@ LLM Usage Policy
e History of Linear Programming
© Linear Programming: The Basics
0 The Engineer’s Diet Dilemma

e Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

18/53

LLM Usage Policy: “Productivity, not Replacement”

The Rule:
@ You CAN use LLMs (ChatGPT, Gemini, Claude, Copilot).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 19/53

LLM Usage Policy: “Productivity, not Replacement”

The Rule:
@ You CAN use LLMs (ChatGPT, Gemini, Claude, Copilot).

@ You MUST acknowledge usage and explain exactly what you asked the LLM
to do.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 19/53

LLM Usage Policy: “Productivity, not Replacement”

The Rule:
@ You CAN use LLMs (ChatGPT, Gemini, Claude, Copilot).

@ You MUST acknowledge usage and explain exactly what you asked the LLM
to do.

The “Random Audit”:

@ Each week, random students will be asked to explain their code/solutions
in person.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 19/53

LLM Usage Policy: “Productivity, not Replacement”

The Rule:
@ You CAN use LLMs (ChatGPT, Gemini, Claude, Copilot).

@ You MUST acknowledge usage and explain exactly what you asked the LLM
to do.

@ Each week, random students will be asked to explain their code/solutions
in person.

@ If you blind-copied without understanding — Big Problems.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 19/53

LLM Usage Policy: “Productivity, not Replacement”

Kosher vs. Not Kosher
v Good:

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

LLM Usage Policy: “Productivity, not Replacement”

Kosher vs. Not Kosher
v Good:

@ “Write a Python function to parse this DIMACS file format.”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 20/53

LLM Usage Policy: “Productivity, not Replacement”

Kosher vs. Not Kosher
v Good:

@ “Write a Python function to parse this DIMACS file format.”

@ “Here is an Algorithm to solve this problem ... Encode the constraint this way ...
Please implement my idea in Python.”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 20/53

LLM Usage Policy: “Productivity, not Replacement”

Kosher vs. Not Kosher
v Good:

@ “Write a Python function to parse this DIMACS file format.”

@ “Here is an Algorithm to solve this problem ... Encode the constraint this way ...

Please implement my idea in Python.”

X Bad:
“Here is the PDF of the homework, solve Problem 3 for me.”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

20/53

Questions?
Ready to build?

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 21/53

Q History of Linear Programming

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 23/53

The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).
Profits:

@ Widget: $3 profit
@ Gadget: $4 profit

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 23/53

The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).
Profits:

@ Widget: $3 profit
@ Gadget: $4 profit
Constraints:

@ Metal: Have 10kg. Widget uses 1,
Gadget uses 2.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 23/53

The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).

Profits:
@ Widget: $3 profit
@ Gadget: $4 profit
Constraints:
@ Metal: Have 10kg. Widget uses 1,
Gadget uses 2.
@ Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

23/53

The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).
Profits: The LP Model:

@ Widget: $3 profit
@ Gadget: $4 profit
Constraints:
@ Metal: Have 10kg. Widget uses 1,
Gadget uses 2.
@ Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

max 3X1 + 4X2

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

23/53

The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).

Profits: The LP Model:

@ Widget: $3 profit max 33X + 4X»

@ Gadget: $4 profit st 1x +2x <10
Constraints:

@ Metal: Have 10kg. Widget uses 1,
Gadget uses 2.

@ Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

23/53

The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).

Profits: The LP Model:

@ Widget: $3 profit max 3% + 4%,

@ Gadget: $4 profit st 1x1 4+ 2x < 10
Constraints: 2x; +1x < 15

@ Metal: Have 10kg. Widget uses 1,
Gadget uses 2.

@ Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

23/53

The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).

Profits: The LP Model:
@ Widget: $3 profi.t max 3% + 4%,
@ Gadget: $4 profit st 1x1 4+ 2x < 10
Constraints: 2x1 +1x < 15
@ Metal: Have 10kg. Widget uses 1, X1, X2 > 0

Gadget uses 2.

@ Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

23/53

Act |: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical
equation was unknown.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 24/53

Act |: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical
equation was unknown.

@ Fourier (1823): Solved small systems of
inequalities.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

24/53

Act |: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical
equation was unknown.

@ Fourier (1823): Solved small systems of
inequalities.

@ Leonid Kantorovich (1939): Invented LP in
the USSR to optimize plywood production.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

24/53

Act |: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical
equation was unknown.

@ Fourier (1823): Solved small systems of
inequalities.

@ Leonid Kantorovich (1939): Invented LP in
the USSR to optimize plywood production.

@ The Tragedy: The Soviet government
ignored him. His work remained unknown to
the West for decades.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

24/53

Act |: The Dark Ages (Pre-1947)

Before 1947, the idea of writing a massive
planning problem as a single mathematical

equation was unknown. Motzkin's Thesis (1936)
@ Fourier (1823): Solved small systems of Listed only 42 papers in all
inequalities. of history on linear
@ Leonid Kantorovich (1939): Invented LP in inequalities. Today, there
the USSR to optimize plywood production. are tens of thousands per
@ The Tragedy: The Soviet government year.

ignored him. His work remained unknown to
the West for decades.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 24/53

Act Il: WWII & George Dantzig

The Setup:
@ George Dantzig spent WWII planning US Air Force logistics by hand.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 25/53

Act Il: WWII & George Dantzig

The Setup:
@ George Dantzig spent WWII planning US Air Force logistics by hand.
@ 1946: The Air Force asks: “Can you mechanize the planning process?”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 25/53

Act Il: WWII & George Dantzig

The Setup:
@ George Dantzig spent WWII planning US Air Force logistics by hand.
@ 1946: The Air Force asks: “Can you mechanize the planning process?”

@ He built a dynamic model of resources and activities, but something was
missing.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 25/53

Act Il: WWII & George Dantzig

The Setup:
@ George Dantzig spent WWII planning US Air Force logistics by hand.
@ 1946: The Air Force asks: “Can you mechanize the planning process?”
@ He built a dynamic model of resources and activities, but something was
missing.
@ Dantzig realized he needed an Explicit Objective Function to optimize on
top of his linear constraints.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 25/53

Act Il: WWII & George Dantzig

The Setup:
@ George Dantzig spent WWII planning US Air Force logistics by hand.
@ 1946: The Air Force asks: “Can you mechanize the planning process?”
@ He built a dynamic model of resources and activities, but something was
missing.
@ Dantzig realized he needed an Explicit Objective Function to optimize on
top of his linear constraints.

@ But how to solve a system with thousands of linear constraints and linear
objective? He needed help.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

25/53

Act lll: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 26/53

Act lll: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.

@ Dantzig starts explaining his Air Force model in tedious detail.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 26/53

Act lll: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.

@ Dantzig starts explaining his Air Force model in tedious detail.
© Von Neumann cuts him off: “Get to the point.”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 26/53

Act Ill: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.

@ Dantzig starts explaining his Air Force model in tedious detail.
© Von Neumann cuts him off: “Get to the point.”
© Dantzig writes the linear programming problem on the board.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

26/53

Act Ill: Meeting Von Neumann (Oct 1947)

Dantzig visits John von Neumann at Princeton.

@ Dantzig starts explaining his Air Force model in tedious detail.
© Von Neumann cuts him off: “Get to the point.”
© Dantzig writes the linear programming problem on the board.

The Revelation

Von Neumann stands up: “Oh—that!”
He proceeds to lecture Dantzig for 90 minutes on Duality and Geometry.
Von Neumann had already derived the theory of LP while inventing Game Theory.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 26/53

Act IV: The Mic Drop

Conference, 1948: Dantzig presents LP to a room of heavyweights.
Harold Hotelling (Economics Giant) stands up:
“But we all know the world is non-linear.”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 27/53

Act IV: The Mic Drop

Conference, 1948: Dantzig presents LP to a room of heavyweights.
Harold Hotelling (Economics Giant) stands up:
“But we all know the world is non-linear.”

Dantzig freezes. The room goes silent. Then Von Neumann raises his hand:

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 27/53

Act IV: The Mic Drop

Conference, 1948: Dantzig presents LP to a room of heavyweights.
Harold Hotelling (Economics Giant) stands up:
“But we all know the world is non-linear.”

Dantzig freezes. The room goes silent. Then Von Neumann raises his hand:

“If the axioms of linear programming fit your problem, use it.
If not, don’t.”

He sat down. The field of Linear Programming was born.

For more historical readings, read “REMINISCENCES ABOUT THE ORIGINS OF
LINEAR PROGRAMMING” by Dantzig himself!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 27/53

o Linear Programming: The Basics

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

The Toy Factory Example

Scenario: You build two products: Widgets (x;) and Gadgets (x»).

Profits: The LP Model:
@ Widget: $3 profi.t max 3% + 4%,
@ Gadget: $4 profit st 1x; 4+ 2x < 10
Constraints: 2x1 +1x < 15
@ Metal: Have 10kg. Widget uses 1, X1, X2 > 0

Gadget uses 2.

@ Wood: Have 15kg. Widget uses 2,
Gadget uses 1.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

29/53

The Canonical Form
Every LP can be written in Matrix Notation: maxc’x s.t. Ax < b.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 30/53

The Canonical Form
Every LP can be written in Matrix Notation: maxc’x s.t. Ax < b.

For our Factory:

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 30/53

The Canonical Form
Every LP can be written in Matrix Notation: maxc’x s.t. Ax < b.

For our Factory:

3 X1 .
{4 X subject to
—— "~

cT X

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 30/53

The Canonical Form
Every LP can be written in Matrix Notation: maxc’x s.t. Ax < b.

For our Factory:

. 1 2 10

3 X1 . 2 1 Xq 15

{4 X subject to 10 % < 0

—— 0 —-1|—=~ 0
c’ X X

A b

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 30/53

The Canonical Form
Every LP can be written in Matrix Notation: maxc’x s.t. Ax < b.

For our Factory:

. 1 2 10
3 X1 . 2 1 Xq 15
{4 Xz] subject to 1 0 XJ < 0
—— 0 —-1|—=~ 0
c’ X X
A b

@ x: Decision Variables (The knobs we turn).
@ c: Objective Coefficients (Profits/Costs).

@ A: Constraint Matrix (Resource usage).

@ b: Right-Hand Side (Capacities).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

30/53

Pathologies: When things go wrong

Before we solve it, what if we can’t?

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Pathologies: When things go wrong

Before we solve it, what if we can’t?

1. Infeasibility
No solution satisfies all constraints.

x<2 AND x>3

The feasible region is Empty.
Gurobi: Model is infeasible.

V.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 31/53

Pathologies: When things go wrong
Before we solve it, what if we can’t?

2. Unboundedness

The region is open in the direction of
improvement.

1. Infeasibility
No solution satisfies all constraints.

x<2 AND x>3 maxx St. x>5

The feasible region is Empty.

. You can increase profit to oo.
Gurobi: Model is infeasible. P o0

/ Gurobi: Model is unbounded.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 31/53

Geometry: The Feasible Region

Geometry: The Feasible Region

N

Metal (x1 +2x, < 10)

Geometry: The Feasible Region

Metal (x1 +2x, < 10)
Wood (2X1 -+ Xo < 15)

Geometry: The Feasible Region

Metal (x; 4 2x2 < 10)
Wood (2X1 -+ Xo < 15)

Geometry: The Feasible Region

I~
N

Metal (X3 - 2x2 < 10)
s Wood (2x; + Xo < 15)

Proft Direction (3x + 4y = 20) “~_

Geometry: The Feasible Region

I~
N

Metal (X7 <+ 2x, <10)

Proft Direction (3x + 4y = 20) “~_

Geometry: The Feasible Region

Prof

0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

2D

Visualizing the Simplex: Pushing the Profit Line

6
— Metal: x; + 2x2< = 10
—— Wood: 2x; + x2 < =15
51 Profit =12
~-- Profitz=18
—— Max Z=26.6
4
£l o
a2 S
) ~
24 i .
= S Optimal Verte;
“~ ~
. Fae
1 AN
~
N
~ 5
ol & ~
.
.
2 3 4 6 7 8

& Elfarouk Harb (UIUC)

Widgets (x1)

CS498: Algorithmic

3D

3D Optimization: Plane Tangent to Vertex

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

The Fundamental Theorem of LP

Theorem

If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 35/53

The Fundamental Theorem of LP

Theorem

If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):

@ Any point x in the polytope is a weighted average (convex combination) of
the polytope’s vertices vy,..., vk X = > a;v; with > . aj=1,a; > 0.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 35/53

The Fundamental Theorem of LP

Theorem

If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):

@ Any point x in the polytope is a weighted average (convex combination) of
the polytope’s vertices vy,..., vk X = > a;v; with > . aj=1,a; > 0.
@ The objective f(x) = ¢’ x is linear.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 35/53

The Fundamental Theorem of LP

Theorem

If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):

@ Any point x in the polytope is a weighted average (convex combination) of
the polytope’s vertices vy,..., vk X = > a;v; with > . aj=1,a; > 0.

@ The objective f(x) = ¢’ x is linear.

© Linearity means f(x) = f(>_, aivi) = >, aif(vi).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 35/53

The Fundamental Theorem of LP

Theorem

If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):

@ Any point x in the polytope is a weighted average (convex combination) of
the polytope’s vertices vy,..., vk X = > a;v; with > . aj=1,a; > 0.

@ The objective f(x) = ¢’ x is linear.

© Linearity means f(x) = f(>_, aivi) = >, aif(vi).

© An average cannot be larger than the maximum of its components.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 35/53

The Fundamental Theorem of LP

Theorem

If a Linear Program has an optimal solution, there exists a Vertex (corner point)
of the feasible region that is optimal.

Proof Sketch (Convexity Argument):
@ Any point x in the polytope is a weighted average (convex combination) of
the polytope’s vertices vy,..., vk X = > a;v; with > . aj=1,a; > 0.
@ The objective f(x) = ¢’ x is linear.
© Linearity means f(x) = f(>_, aivi) = >, aif(vi).
© An average cannot be larger than the maximum of its components.
@ Therefore, f(x) < max; f(v;). The max is at a corner!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 35/53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36/53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory”)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36/53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory”)

Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36/53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory”)

Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

Objective
m.setObjective(3*x1 + 4%x2, GRB.MAXIMIZE)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36/53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory”)

Variables
x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")

Objective
.setObjective(3*x1 + 4%x2, GRB.MAXIMIZE)

.addConstr(1#x1 + 2%x2 <= 10, "metal")

m

Constraints

m

m.addConstr(2*x1 + 1%x2 <= 15, "wood")

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36/53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory”)

Variables

x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")
Objective
m.setObjective(3*x1 + 4%x2, GRB.MAXIMIZE)
Constraints
m
m
m

.addConstr(1#x1 + 2%x2 <= 10, "metal")
.addConstr(2*x1 + 1%x2 <= 15, "wood")

.optimize()

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36/53

From Math to Code (Gurobi)

We don’t solve these LPs by hand. We assume the Solver is a black box.

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("factory”)

Variables

x1 = m.addVar(name="widgets")
x2 = m.addVar(name="gadgets")
Objective

m.setObjective(3*x1 + 4%x2, GRB.MAXIMIZE)
Constraints
m
m

.addConstr(1#x1 + 2%x2 <= 10, "metal")
.addConstr(2*x1 + 1%x2 <= 15, "wood")

m.optimize()
print(x1.X, x2.X)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 36/53

Q The Engineer’s Diet Dilemma

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

The Scenario

OptiMeal Inc. has a conflict:
@ Finance Team: “Cut costs! Food is too expensive.”
@ Nutritionists: “We need to meet daily health requirements.”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 38/53

The Scenario

OptiMeal Inc. has a conflict:
@ Finance Team: “Cut costs! Food is too expensive.”
@ Nutritionists: “We need to meet daily health requirements.”

Your Mission:
@ Use LP to design the cheapest daily meal plan.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 38/53

The Scenario

OptiMeal Inc. has a conflict:
@ Finance Team: “Cut costs! Food is too expensive.”
@ Nutritionists: “We need to meet daily health requirements.”

Your Mission:
@ Use LP to design the cheapest daily meal plan.
@ You can eat fractional servings (e.g., 0.5 bananas).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

38/53

The Scenario

OptiMeal Inc. has a conflict:
@ Finance Team: “Cut costs! Food is too expensive.”
@ Nutritionists: “We need to meet daily health requirements.”

Your Mission:
@ Use LP to design the cheapest daily meal plan.
@ You can eat fractional servings (e.g., 0.5 bananas).
@ Objective: Min Cost.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

38/53

The Scenario

OptiMeal Inc. has a conflict:
@ Finance Team: “Cut costs! Food is too expensive.”
@ Nutritionists: “We need to meet daily health requirements.”

Your Mission:
@ Use LP to design the cheapest daily meal plan.
@ You can eat fractional servings (e.g., 0.5 bananas).
@ Objective: Min Cost.
@ Constraints: Calorie floor, Protein floor, Sugar ceiling, etc.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

38/53

The Data (Nutrition & Costs)

Food Cost ($) Cal Prot (g) Carb (g) Sugar (g) Fiber (g) Fat (g)
Chicken 1.80 128 24.0 0.0 0.0 0.0 2.7
Banana 0.30 105 1.3 27.0 14.0 31 0.4
Yogurt 090 104 5.9 7.9 7.9 0.0 5.5
Beans 1.10 120 8.0 21.0 1.0 7.0 0.5
Spinach 0.40 7 0.9 11 0.1 0.7 0.1
Almonds 0.70 160 6.0 6.0 1.0 3.0 14.0

k Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 39/53

The Data (Nutrition & Costs)

Food Cost ($) Cal Prot (g) Carb (g) Sugar (g) Fiber (g) Fat (g)
Chicken 1.80 128 24.0 0.0 0.0 0.0 2.7
Banana 0.30 105 1.3 27.0 14.0 31 0.4
Yogurt 0.90 104 5.9 7.9 7.9 0.0 55
Beans 1.10 120 8.0 21.0 1.0 7.0 0.5
Spinach 0.40 7 0.9 11 0.1 0.7 0.1
Almonds 0.70 160 6.0 6.0 1.0 3.0 14.0
Requirements:

@ Calories > 2000 @ Sugar < 50¢g

@ Protein > 100g @ Fat < 120g

@ Fiber > 509 @ Sodium < 2300mg

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 39/53

The Mathematical Model

Let x; be the number of servings of food j. Let ¢; be the cost of food j. Let a; be
the amount of nutrient / in food j.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40/53

The Mathematical Model

Let x; be the number of servings of food j. Let ¢; be the cost of food j. Let a; be
the amount of nutrient / in food j.

mn > X (Minimize Cost)

jeFoods

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40/53

The Mathematical Model

Let x; be the number of servings of food j. Let ¢; be the cost of food j. Let a; be
the amount of nutrient / in food j.

mn > X (Minimize Cost)

jeFoods

st.) Calj-x;, > 2000
J

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40/53

The Mathematical Model

Let x; be the number of servings of food j. Let ¢; be the cost of food j. Let a; be
the amount of nutrient / in food j.

mn > X (Minimize Cost)

jeFoods

st.) Calj-x;, > 2000

J
> Prot-x;, > 100
J

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40/53

The Mathematical Model

Let x; be the number of servings of food j. Let ¢; be the cost of food j. Let a; be
the amount of nutrient / in food j.

mn > X (Minimize Cost)

jeFoods
st.) Calj-x;, > 2000

J
> Prot-x;, > 100
J

> “Sugar;-x; < 50
j

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40/53

The Mathematical Model

Let x; be the number of servings of food j. Let ¢; be the cost of food j. Let a; be
the amount of nutrient / in food j.

mn > X (Minimize Cost)

jeFoods
st.) Calj-x;, > 2000

J
> Prot-x;, > 100
J

> “Sugar;-x; < 50
j

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40/53

The Mathematical Model

Let x; be the number of servings of food j. Let ¢; be the cost of food j. Let a; be
the amount of nutrient / in food j.

mn > X (Minimize Cost)

jeFoods

st.) Calj-x;, > 2000
J
> Prot-x;, > 100
J

> “Sugar;-x; < 50
j

Xj

v
o

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 40/53

Implementation in Gurobi

params = {

"Chicken” : { "price": 1.80, "protein": 24.0, "sugar”: ©.0, "..." : "..." 3},
"Banana” : { "price": 0.30, "protein”: 1.3, "sugar”": 14.0, "..." : "..." 3},
"Yogurt” { "price": 0.90, "protein”: 5.9, ‘'sugar": 7.9, "..." :" "3,
"Beans” { "price": 1.10, "protein”: 8.0, "sugar”: 1.0, "..." " "y,

}
foods = list(params.keys())

ra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Implementation in Gurobi

params = {
"Chicken" : { "price”: 1.80, "protein”: 24.0, "sugar": 0.0, "...
"Banana” : { "price": 0.30, "protein”: 1.3, ‘"sugar”: 14.0, "...
"Yogurt" { "price": 0.90, "protein”: 5.9, '"sugar”: 7.9, "
"Beans” { "price": 1.10, "protein”: 8.0, "sugar”: 1.0, "

}
foods = list(params.keys())

Variables: x[food]
x = m.addVars(foods, 1b=0.0, name="servings")

ra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Implementation in Gurobi

params = {
"Chicken” : { "price": 1.80, "protein": 24.0, "sugar”: ©.0, "..." : "..." 3},
"Banana” : { "price": 0.30, "protein”: 1.3, ‘"sugar": 14.0, "..." : "..." 3},
"Yogurt" { "price": 0.90, "protein”: 5.9, 'sugar”: 7.9, "..." :" "3,
"Beans” { "price": 1.10, "protein”: 8.0, "sugar”: 1.0, "..." " "y,

}
foods = list(params.keys())
Variables: x[food]
x = m.addVars(foods, 1b=0.0, name="servings")
Objective: Minimize Cost
obj_expr = 0
for food in foods:
obj_expr += params[food]["price"] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)

ra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Implementation in Gurobi

params = {
"Chicken” : { "price": 1.80, "protein": 24.0, "sugar”: ©.0, "..." : "..." 3},
"Banana” : { "price": 0.30, "protein”: 1.3, "sugar”": 14.0, "..." : "..." 3},
"Yogurt” { "price": 0.90, "protein”: 5.9, ‘sugar”": 7.9, "..." :"..." 3},
"Beans” { "price": 1.10, "protein”: 8.0, "sugar”: 1.0, "..." " "3,

}
foods = list(params.keys())
Variables: x[food]
x = m.addVars(foods, 1b=0.0, name="servings")
Objective: Minimize Cost
obj_expr = 0
for food in foods:

obj_expr += params[food]["price"] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)
Constraints (Example: Protein & Sugar)
const_protein = m.addConstr(

gp.quicksum(params[fd]["protein”] * x[fd] for fd in foods) >= 100, "min_protein

)

ra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 41/53

Implementation in Gurobi

params = {
"Chicken” : { "price": 1.80, "protein": 24.0, "sugar”: ©.0, "..." : "..." 3},
"Banana” : { "price": 0.30, "protein”: 1.3, "sugar”": 14.0, "..." : "..." 3},
"Yogurt” { "price": 0.90, "protein”: 5.9, ‘sugar”": 7.9, "..." :"..." 3},
"Beans” { "price": 1.10, "protein”: 8.0, "sugar”: 1.0, "..." " "3,

}
foods = list(params.keys())
Variables: x[food]
x = m.addVars(foods, 1b=0.0, name="servings")
Objective: Minimize Cost
obj_expr = 0
for food in foods:
obj_expr += params[food]["price”] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)
Constraints (Example: Protein & Sugar)
const_protein = m.addConstr(
gp.quicksum(params[fd]["protein”] * x[fd] for fd in foods) >= 100, "min_protein”
)

const_sugar = m.addConstr(gp.quicksum(params[food]["sugar"] #* x[i] for i in foods) <= 50, "max_sugar")

ra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 41/53

Implementation in Gurobi

params = {
"Chicken” : { "price": 1.80, "protein": 24.0, "sugar”: ©.0, "..." : "..." 3},
"Banana” : { "price": 0.30, "protein”: 1.3, "sugar”": 14.0, "..." : "..." 3},
"Yogurt” { "price": 0.90, "protein”: 5.9, ‘sugar”": 7.9, "..." :"..." 3},
"Beans” { "price": 1.10, "protein”: 8.0, "sugar”: 1.0, "..." " "3,

}
foods = list(params.keys())
Variables: x[food]
x = m.addVars(foods, 1b=0.0, name="servings")
Objective: Minimize Cost
obj_expr = 0
for food in foods:

obj_expr += params[food]["price”] * x[i]
m.setObjective(obj_expr, GRB.MINIMIZE)
Constraints (Example: Protein & Sugar)
const_protein = m.addConstr(

gp.quicksum(params[fd]["protein”] * x[fd] for fd in foods) >= 100, "min_protein”

)
const_sugar = m.addConstr(gp.quicksum(params[food]["sugar"] #* x[i] for i in foods) <= 50, "max_sugar")
... rest of the requirements ...

m.optimize()

ra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 41/53

Q Interpreting and Debugging Gurobi Output

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

@ m.Status: Did it work?
(2=0pt, 3=Infeas, 5=Unbdd)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43/53

Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

@ m.Status: Did it work?
(2=0pt, 3=Infeas, 5=Unbdd)

@ m.ObjVal: The total profit/cost (2).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43/53

Reading the Tea Leaves (Gurobi Output)
When you run m.optimize(), Gurobi populates attributes on the objects.
Model Attributes:

@ m.Status: Did it work?
(2=0pt, 3=Infeas, 5=Unbdd)

@ m.ObjVal: The total profit/cost (Z).

Variable Attributes:

@ var.X: The optimal value
(x; = 6.66).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43/53

Reading the Tea Leaves (Gurobi Output)

When you run m.optimize(), Gurobi populates attributes on the objects.

Model Attributes:

@ m.Status: Did it work?
(2=0pt, 3=Infeas, 5=Unbdd)
@ m.ObjVal: The total profit/cost (Z).

Variable Attributes:

@ var.X: The optimal value
(x; = 6.66).

@ var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

43/53

Reading the Tea Leaves (Gurobi Output)

When you run m.optimize(), Gurobi populates attributes on the objects.

Model Attributes: Constraint Attributes:
@ m.Status: Did it work? @ constr.Slack: Difference
(2=0Opt, 3=Infeas, 5=Unbdd) between LHS and RHS.

@ m.ObjVal: The total profit/cost (Z).

Variable Attributes:

@ var.X: The optimal value
(x; = 6.66).

@ var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

43/53

Reading the Tea Leaves (Gurobi Output)

When you run m.optimize(), Gurobi populates attributes on the objects.

Model Attributes: Constraint Attributes:
@ m.Status: Did it work? @ constr.Slack: Difference
(2=0pt, 3=Infeas, 5=Unbdd) between LHS and RHS.
@ m.ObjVal: The total profit/cost (Z). @ constr.Pi (7w): Shadow Price.

. . “If had 1 more unit of Metal,
Variable Attributes: how much more profit would |
@ var.X: The optimal value make?”. More on this next
(X1 = 6.66). week!
@ var.RC: Reduced Cost. How much
the objective coefficient must
improve before this variable
becomes non-zero (More next
week).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43/53

Reading the Tea Leaves (Gurobi Output)

When you run m.optimize(), Gurobi populates attributes on the objects.

Model Attributes: Constraint Attributes:
@ m.Status: Did it work? @ constr.Slack: Difference
(2=0pt, 3=Infeas, 5=Unbdd) between LHS and RHS.
@ m.ObjVal: The total profit/cost (Z). @ constr.Pi (7w): Shadow Price.

“If | had 1 more unit of Metal,

Variable Attributes: how much more profit would |

@ var.X: The optimal value make?”. More on this next
(x; = 6.66). week!

@ var.RC: Reduced Cost. How much :
the objective coefficient must Warning
improve before this variable Attributes like .X and .Pi are only
becomes non-zero (More next available if m.Status == 2 (Optimal).
week). Always check status first!

= - =

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 43/53

Infeasibility Diagnosis

import gurobipy as gp
import gurobipy

gp.Model("Infeasible")

= m.addVar(name="x")
_setObjective(-1*x, gp.GRB.MAXIMIZE)
.addConstr(x>=3)

.addConstr(x<=2)

.optimize()

print("Optimize status:”, m.Status)

3 3 3 3 X 3

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Infeasibility Diagnosis

import gurobipy as gp
import gurobipy Gurobi Optimizer version 12.0.3 build v12.0.3rc@ (mac64[arm]

- Darwin 23.1.0 23B2073)

m = gp.Model("Infeasible")
x = m.addVar(name="x") CPU model: Apple M3 Max
m.setObjective(-1xx, gp.GRB.MAXIMIZE) Thread count: 14 physical cores, 14 logical processors, using up to 14 threa
m.addConstr(x>=3)
m.addConstr(x<=2) Optimize a model with 2 rows, 1 columns and 2 nonzeros
m.optimize() Model fingerprint: @xf5b@6d2b
print("Optimize status:", m.Status) Coefficient statistics:
Matrix range [1e+00, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, Qe+00]
RHS range [2e+00, 3e+00]

Presolve time: 0.00s

Solved in @ iterations and 0.00 seconds (0.00 work units)
Infeasible model
Optimize status: 3

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 44/53

What about Larger Models?

import gurobipy as gp
m = gp.Model("TrickyInfeasible")
Variables

x = m.addVar(lb=-0, ub=8, name="x")
y = m.addVar(lb=-0, ub=8, name="y")

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

What about Larger Models?

import gurobipy as gp
m = gp.Model("TrickyInfeasible")

Variables
= m.addVar(lb=-0, ub=8, name="x")
= m.addVar(lb=-0, ub=8, name="y")

Arbitrary bounded objective
.setObjective(x + y, gp.GRB.MINIMIZE)

3 #H# < X #=*
|

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

What about Larger Models?

import gurobipy as gp

m

3 #H# < X #=*

= gp.Model("TrickyInfeasible")
Variables

= m.addVar(lb=-0, ub=8, name="x")

= m.addVar(lb=-0, ub=8, name="y")
Arbitrary bounded objective
_setObjective(x + y, gp.GRB.MINIMIZE)

#Constraints

m.
.addConstr(x + 2*y <= 4, name="c2_budget2")

m
m
m
m

addConstr(2*x + y <= 4, name="c1_budget1")

.addConstr(x +y >= 5, name="c3_demand")
.addConstr(x <= 8, name="c4_x_cap")
.addConstr(y <= 8, name="c5_y_cap”)

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

01/20/2026

45/53

What about Larger Models?

import gurobipy as gp
m = gp.Model("TrickyInfeasible")

Variables

= m.addVar(lb=-0, ub=8, name="x")

= m.addVar(lb=-0, ub=8, name="y")
Arbitrary bounded objective
m.setObjective(x + y, gp.GRB.MINIMIZE)

#Constraints

m.addConstr(2*x + y <= 4, name="c1_budget1")
m.addConstr(x + 2xy <= 4, name="c2_budget2")
m
m

H < X FH
|

.addConstr(x +y >= 5, name="c3_demand")
.addConstr(x <= 8, name="c4_x_cap")
m.addConstr(y <= 8, name="c5_y_cap”)

m.optimize()
print("Optimize status:"”, m.Status)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

45/53

What about Larger Models?

import gurobipy as gp
m = gp.Model("TrickyInfeasible")

Variables
= m.addVar(lb=-0, ub=8, name="x")
= m.addVar(1lb=-0, ub=8, name="y")

Arbitrary bounded objective
m.setObjective(x + y, gp.GRB.MINIMIZE)

#Constraints

.addConstr(2*x + y <= 4, name="c1_budget1")
.addConstr(x + 2*y <= 4, name="c2_budget2")
.addConstr(x +y >= 5, name="c3_demand")
.addConstr(x <= 8, name="c4_x_cap")
m.addConstr(y <= 8, name="c5_y_cap”)

H < X FH
|

3 3 3 3

m.optimize()
print("Optimize status:”, m.Status)

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Optimize a model with 5 rows, 2 columns and 8 nonzeros
Model fingerprint: 0x@0fc1d77
Coefficient statistics:

Matrix range [1e+00, 2e+00]
Objective range [1e+00, 1e+00]
Bounds range [8e+00, 8e+00]
RHS range [4e+00, 8e+00]

Presolve removed 2 rows and @ columns
Presolve time: 0.01s

Solved in @ iterations and .01 seconds (0.00 work units)

Infeasible model
Optimize status: 3

01/20/2026 45/53

Irreducible Infeasible Subsystem (11S)

What is an 1IS?

@ When a model is infeasible, the full set of constraints cannot all be satisfied
simultaneously.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 46/53

Irreducible Infeasible Subsystem (11S)

What is an 1IS?

@ When a model is infeasible, the full set of constraints cannot all be satisfied
simultaneously.

@ An lIS is a minimal subset of constraints and bounds that is still infeasible.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 46/53

Irreducible Infeasible Subsystem (11S)

What is an 1IS?

@ When a model is infeasible, the full set of constraints cannot all be satisfied
simultaneously.

@ An IS is a minimal subset of constraints and bounds that is still infeasible.
@ “Minimal” = removing any constraint from that subset makes it feasible again.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 46/53

Irreducible Infeasible Subsystem (11S)

What is an 1IS?

@ When a model is infeasible, the full set of constraints cannot all be satisfied
simultaneously.

@ An IS is a minimal subset of constraints and bounds that is still infeasible.
@ “Minimal” = removing any constraint from that subset makes it feasible again.
@ |ISs help pinpoint the true source of infeasibility in large models.

Good News
Gurobi can compute an IIS for you automatically!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 46/53

Computing an IIS in Gurobi

If the model is infeasible, we can ask Gurobi to identify the conflicting constraints.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 47/53

Computing an IIS in Gurobi

If the model is infeasible, we can ask Gurobi to identify the conflicting constraints.

if m.Status == GRB.INFEASIBLE:
print("\nModel is infeasible; computing IIS...")
m.computeIIS()

print("Constraints in the IIS:")
for ¢ in m.getConstrs():
if c.IISConstr: # True if part of the IIS
print(f" {c.ConstrName}")

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 47/53

Example |IS Output

Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf.

Time
0 0.0000000e+00 2.5 +00 0.

+00 Qs

14

IIS computed: 3 constraints and © bounds

IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:

c1_budget1
c2_budget2
c3_demand

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Example |IS Output

Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf.

Time
0 0.0000000e+00 2.500000e+00 ©.000000e+00

0s

IIS computed: 3 constraints and © bounds

IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:

c1_budget1
c2_budget2
c3_demand

@ Remember, these constraints correspond to 2x + y < 4, x + 2y < 4, and
x + y > 5. Adding the first 2 inequalities contradicts the third.

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering 01/20/2026 48/53

Example |IS Output

Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf. Time
0 0.0000000e+00 2.500000e+00 ©.000000e+00 0s

IIS computed: 3 constraints and © bounds

IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:

c1_budget1
c2_budget2
c3_demand

@ Remember, these constraints correspond to 2x + y < 4, x + 2y < 4, and
x + y > 5. Adding the first 2 inequalities contradicts the third.
@ These are the minimal conflicting constraints.

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering 01/20/2026 48/53

Example 1IS Output

Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf.

Time
Q 0.0000000e+00 2.500000e+00 0.000000e+00

0s

IIS computed: 3 constraints and © bounds

IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:

c1_budget1
c2_budget2
c3_demand

@ Remember, these constraints correspond to 2x + y < 4, x + 2y < 4, and
X + y > 5. Adding the first 2 inequalities contradicts the third.
@ These are the minimal conflicting constraints.

@ Removing any one of them would make the model feasible.

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering 01/20/2026 48/53

Example 1IS Output

Model is infeasible; computing IIS...

Iteration Objective Primal Inf. Dual Inf.

Time
Q 0.0000000e+00 2.500000e+00 0.000000e+00

0s

IIS computed: 3 constraints and © bounds

IIS runtime: 0.00 seconds (0.00 work units)
Constraints in the IIS:

c1_budget1
c2_budget2
c3_demand

@ Remember, these constraints correspond to 2x + y < 4, x + 2y < 4, and
X + y > 5. Adding the first 2 inequalities contradicts the third.

@ These are the minimal conflicting constraints.

@ Removing any one of them would make the model feasible.

@ Great for isolating modeling mistakes in large LPs/MIPs.

Chandra Chekuri & Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering 01/20/2026 48/53

Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 49/53

Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.
Gurobi not only detects unboundedness, it returns an unbounded ray.

@ An unbounded ray is a vector d such that:
X + A\d is feasible for all A > 0

and the objective coefficient ¢"d > 0 (for maximization).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 49/53

Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.
Gurobi not only detects unboundedness, it returns an unbounded ray.

@ An unbounded ray is a vector d such that:
X + A\d is feasible for all A > 0

and the objective coefficient ¢"d > 0 (for maximization).
@ Gurobi provides this via the attribute:

var .UnbdRay

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 49/53

Unbounded LPs and Infinite Directions
Unbounded LP = The objective can grow without limit while staying feasible.
Gurobi not only detects unboundedness, it returns an unbounded ray.

@ An unbounded ray is a vector d such that:
X + A\d is feasible for all A > 0

and the objective coefficient ¢"d > 0 (for maximization).
@ Gurobi provides this via the attribute:
var .UnbdRay

@ Nonzero components of the ray indicate which variables “run off to infinity.”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 49/53

Unbounded LPs and Infinite Directions

Unbounded LP = The objective can grow without limit while staying feasible.
Gurobi not only detects unboundedness, it returns an unbounded ray.
@ An unbounded ray is a vector d such that:

X + \d is feasible forall A > 0

and the objective coefficient ¢"d > 0 (for maximization).
@ Gurobi provides this via the attribute:

var .UnbdRay

@ Nonzero components of the ray indicate which variables “run off to infinity.”

Interpretation
The unbounded ray shows how the LP escapes to infinity.

- = = = S Re

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 49/53

Example of an Unbounded LP?

Example (Maximization):

max X + y
st.x—y>1
X,y >0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

01/20/2026

50/53

Example of an Unbounded LP?

Example (Maximization):
@ Feasible region goes to cc.
@ Objective increases without

st.x—y>1 bound.
@ No vertex optimum exists.

max X + y

X,y >0

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

50/53

Geometry of the Unbounded Ray

Y o From the feasible point (1,0) we
can move along (x,y) =
(1,0) + A(1,1) = (1 + X\,), A >0.

Feasible region:

X_y217 XZOa YZO

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 51/53

Geometry of the Unbounded Ray

y @ From the feasible point (1,0) we
can move along (x, y) =
1,0+ 21, 1)) =1+ X)), A>0.
@ The objective x + y grows without
bound:
1+2\ — o0.

Feasible region:

X_y217 XZOa YZO

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 51/53

Geometry of the Unbounded Ray

y @ From the feasible point (1,0) we
can move along (x, y) =
1,0+ 21, 1)) =1+ X)), A>0.
@ The objective x + y grows without
bound:
1+2\ — o0.

@ Gurobi’s UnbdRay returns this
Feasible region: direction.

X_y217 XZOa YZO

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 51/53

Gurobi Example: Unbounded Model + Ray

import gurobipy as gp
from gurobipy import GRB

m = gp.Model("Unbounded")

X = m.addVar(1lb=0, name="x")

y = m.addVar(1lb=0, name="y")
m.setObjective(x + y, GRB.MAXIMIZE)
m.addConstr(x - y >= 1, name="c1_skew")
KEY: ask Gurobi to compute ray info
m.setParam(GRB.Param. InfUnbdInfo, 1)
m.optimize()

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 52/53

Gurobi Example: Unbounded Model + Ray

import gurobipy as gp
from gurobipy import GRB

gp.Model("Unbounded™)
m.addVar(1b=0, name="x")

= m.addVar(1lb=0, name="y")
.setObjective(x + y, GRB.MAXIMIZE)
.addConstr(x - y >= 1, name="c1_skew")
KEY: ask Gurobi to compute ray info
.setParam(GRB.Param. InfUnbdInfo, 1)
m.optimize()

3 #3 3K X 3

print("Status:"”, m.Status)
if m.Status == GRB.UNBOUNDED:
print("\nUnbounded Ray:")
for v in m.getVars():
print(f”"{v.VarName}: {v.UnbdRay}")

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 52/53

Gurobi Example: Unbounded Model + Ray

import gurobipy as gp
from gurobipy import GRB Status: 5

3 #3 3K X 3

gp.Model("Unbounded™) Unbounded Ray:
m.addVar (1b=0, name="x") x: 1.0
= m.addVar(1b=0, name="y") y: 1.0

.setObjective(x + y, GRB.MAXIMIZE)
.addConstr(x - y >= 1, name="c1_skew")

KEY: ask Gurobi to compute ray info

.setParam(GRB.Param. InfUnbdInfo, 1)
m.

optimize()

print("Status:"”, m.Status)

if m.Status == GRB.UNBOUNDED:

print("\nUnbounded Ray:")

for v in m.getVars():
print(f”"{v.VarName}: {v.UnbdRay}")

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026

52/53

Gurobi Example: Unbounded Model + Ray

import gurobipy as gp

from gurobipy import GRB Status: 5

m = gp.Model("Unbounded”) Unbounded Ray:

x = m.addVar(1lb=0, name="x") x: 1.0

y = m.addVar(1lb=0, name="y") y: 1.0

m.setObjective(x + y, GRB.MAXIMIZE)

m.addConstr(x - y >= 1, name="c1_skew")

KEY: ask Gurobi to compute ray info) The I’ay (1, 1) means bOth X and y
m.setl.’arjam(GRB.Param.InfUndenFo, D) can increase |ndef|n|te|y

m.optimize()

print("Status:”, m.Status) @ The constraint x — y > 1 stays

if m.Status == GRB.UNBOUNDED:

print(”\nUnbounded Ray:") S&tleled for a”

for v in m.getVars(): (X, y) = (170) +)‘(17 1)

print(f”{v.VarName}: {v.UnbdRay}")

@ Objective grows as x + y — +oo.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 52/53

TODOs after Lecture.

@ Install Gurobi: Get your academic license working.
@ Code and Solve The Diet Problem in HW1.

@ Use Tools like m.computeIIS() and var.UnbdRay to find the conflict in toy
infeasible models and unbounded models.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/20/2026 53/53

	Course Logistics
	Differences from CS374 and CS473
	Content and Types of Projects in Class
	Prerequisites
	Grading
	LLM Usage Policy

	History of Linear Programming
	Linear Programming: The Basics
	The Engineer's Diet Dilemma
	Interpreting and Debugging Gurobi Output

