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@ The Simplex Algorithm
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How do Solvers actually work?

Last lecture, we defined the LP:

maxc'x st Ax<b, x>0

The Fundamental Theorem:

@ The optimal solution lies on a Vertex
(corner).

Naive Algorithm:
@ List all vertices. Check objective value. Pick
max.

Problem: A hypercube in n dimensions has
2" vertices. Too slow.
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How do Solvers actually work (cont'd)?
Last lecture, we defined the LP:
maxc'x st Ax<b, x>0

The Fundamental Theorem:

@ The optimal solution lies on a Vertex Polytope
(corner).

Key Insight:
@ Vertices are connected by edges.

@ We can "walk” from vertex to vertex
improving our objective.
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The Simplex Intuition (Hill Climbing)

Algorithm (Dantzig, 1947):

@ Start at any vertex (usually Origin).

@ Look along edges connected to
current vertex.

© Is a neighbor better?

» Yes: Move there (Pivot). Go to 2.
» No: You are done. (Local max =
Global max).

Optimal
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Geometric View: A 2D Example

Example: max 3x; + 4x, subject to: x; +2x2 < 10,2x1 + X2 < 15, X1, X2 > 0.

Xo 2X1+ X2 =15

D(0,5)

(3:3)
373/ +2x =10

X1

A(0,0) B(7.5,0)

Simplex: pick a basic feasible solution (a vertex), A(0,0) with z = 3x; +4x, = 0.
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Geometric View: Simplex Walk (Step 1)

Start at A= (0,0), z = 0. Check neighboring vertices on the polytope.
Xo 2X1 +Xo =15

D(0,5)

20 5
C(g, é)X1 + 2X2 =10

X1

A(0,0) move to neighbor  B(7.5,0)

AtB=(75,0):z=3-75+4-0=225 > 0, so simplex pivots from A to B.
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Geometric View: Simplex Walk (Step 2)
Now at B = (7.5,0) with z = 22.5. Check its neighbors on the polytope.
Xo 2X1+ X2 =15

D(0,5)

@5)
_3’3X1+2X?:1O

A(0,0) B(7.5,0)

At C = (20 2),z=3x1+4x,=3-2+4.2 =8 2267

No neighbor improves z further = S|mplex stops C is optimal.
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Vertices and Basic Feasible Solutions
Setup: Consider the LP in two variables:

max Z = 3X1 +4x>

s.t. Xy +2x <10,
2xy + X < 15,
Xy >0, xo > 0.

@ The constraints define a feasible region (a polygon).
@ A vertex is a “corner” of this region.

@ Geometrically: at a vertex, we are on the boundary of enough constraints to
pin down a single point.

Key idea: In 2D, a vertex is the intersection of 2 boundaries.
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From Geometry to Algebra
Boundaries = constraints tight as equalities.

In our example, boundaries include:

X1=0, x%=0, Xx3+2x =10, 2x3+ x> =15.

@ To get a vertex in 2D, we choose 2 boundaries and solve them as a system
of 2 equations.

@ This gives the coordinates of that corner point (if it is feasible).

In general:
@ In an LP with m variables, a vertex comes from m tight constraints.
@ Solving those m equalities gives a single point.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026

11/46



Examples of Vertices as Intersections

Vertex A= (0,0) Vertex C
@ Tight: x; =0 and x, = 0. @ Tight: x; + 2x, = 10 and
v 5 2X1+x =15 = x; =2 % =2.
e”f’r’_‘ " (7'560) | Infeasible Pair 1
@ Tight: xo =0 an i
B B B @ Tight: x; =0 and
2X1+ X =15 — Xy =7.5, % =0. 2%+ Xp — 15 —> x; = 0, x5 — 15.
Vertex D = (0,5) Infeasible Pair 2
@ Tight: x; =0 and @ Tight: X, =0 and
X1 +2x% =10 = x; = 0,x, = 5. X1 +2x% =10 = x; =10, x = 0.
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Basic Feasible Solutions (Algebraic View)

Basic Feasible Solution

A point is a basic feasible solution (BFS) if:
@ It is feasible (satisfies all constraints).
@ It is a vertex of the feasible region:

in m dimensions: it lies at the intersection of m tight constraints (including
x; > 0), and those m equalities have a unique solution.

Key facts:
@ Every vertex < a BFS.

@ Simplex method moves from one BFS (vertex) to another, improving the
objective each time.
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Pivoting from a Vertex: Setup at D

Current vertex:
D=(0,5), z(D)=3-0+4-5=20.
Tight constraints at D:

X1:O, X1—|—2X2:10.

These two equalities define D.

@ To pivot, we relax one of them (this gives an edge),
@ move along that edge,

@ and stop when a new constraint becomes tight.
Goal: choose the edge that increases z.
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Step 1: Which Edge Improves the Objective?
Edge 1: keep x; = 0, relax x; + 2x, = 10to x; +2x, <10 = x, < 5.
On this edge:

xx=0, xx=5-t t>0 (movingdown from D).

Objective:
z(t)=3-0+4(5-1t) =20 — 4t
Slope: z decreases as f increases.
Edge 2: keep x; +2x. = 10, relax x; = 0 to x; > 0.
On this edge:
10—t o
Xp=1t X = % t >0 (moving right from D).
Objective: z(t) = 3t + 4 - 1% = 3t + 20 — 2t = 20 + t. Slope: z increases as t 1
So we pivot along Edge 2. (Entering variable: x;.)
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Step 2: Which Constraint Becomes Tight First? (Ratio
Test)

We move along Edge 2:
10—t
pu— = - > .
X1 t, Xo 2 t>0

Plug this into the other constraints and see when they hit equality.

Constraint 2x; + x» < 15:
10 -t 4t +10 -t 10

= _ =1 10 = = —.
15 = 5 5= 3t+10=30 = ¢ 3

Constraint x, > 0: 1%t =0 = t=10.
Constraint x; > 0is fine for all t > 0.

2t +

: .1 : o
Smallest nonnegative t is ?0 So the next constraint to become tight is:

2x1 + Xo = 15.
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Step 3: New Vertex = Solve a 2 x 2 System

At the new vertex, the tight constraints are:

X1 +2xo = 10,
2X1 + Xo = 15.
Solve:
X1 = 2— Xo = §
3’ 3
New BFS (after the pivot):

c-(23)

A pivot is literally: change one equation, solve a tiny linear system.
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Repeat the Same Three Steps at the New Vertex

At C there are again two tight constraints (two equations). To pivot again, we
repeat the same pattern:

@ Choose an edge: Relax one tight constraint, keep the other. Parametrize
the edge, compute z(t), pick the edge with increasing z.

@ Ratio test: Plug the parametrization into all constraints, solve for t, and find
which constraint hits equality first.

© New vertex: Replace the old constraint with this new tight constraint, solve
the resulting 2 x 2 system.

In m dimensions, it’s the same idea: solve m equations, relax one, ratio test,
solve a new m x m system.
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Degeneracy: When More Than Two Constraints Meet

In 2 variables, a vertex normally comes from two tight constraints.

Sometimes, more than two constraints happen to be tight at the same point:
X1+ X <1,x1<05,x<0.5.

At the point (0.5, 0.5) all three become equalities. What does this mean for
simplex?

@ A vertex must be described using exactly 2 tight equations.

@ But here we have 3 different pairs that all solve to the same point.

@ These different pairs lead to different parameterizations of the same vertex.

This situation is called degeneracy: the vertex is the unique solution of more
equations than needed.
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Degeneracy: Visualizing the Point (0.5,0.5)

Constraints:
X1+x <1, x31<05 x<05 x>0, x>0

X
2 X, =05

(0.5,0.5): 3 constraints tight
Xo = 0.5

At (0.5,0.5), all three constraints are tight, but it is still just one vertex = degeneracy.
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Why Degeneracy Matters for Pivoting

At a degenerate vertex (e.g. (0.5,0.5)), when simplex tries to pivot:

Step 1: Relax one tight constraint to form an edge. But several tight constraints
remain; depending on which two you pick, you may be describing the same point.
Step 2: Ratio test. Because the point already satisfies more than two equations,
the “new” constraint might hit equality immediately:

t=0.
Step 3: Solve the new linear system. You get the same point again:
(X1 , X2) = (05, 05)

This is a degenerate pivot: simplex changes which two equations define the
vertex but does not move in space.

If this happens repeatedly, simplex can “stall” or even cycle (cycling is fixed in
practice by Bland’s rule and similar tie-breakers).
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Why Simplex Terminates
Convergence Argument:
@ The feasible region is a polytope (bounded polyhedron)
@ A polytope has finitely many vertices and edges
@ Each pivot moves to an adjacent vertex with strictly better objective (in
non-degenerate case)
© We never revisit a vertex (objective strictly improves)
@ Must reach optimal vertex in finite steps

Upper Bound on lterations

With m constraints and n variables:
@ Maximum (’,’]) possible bases (assuming all constraints are equalities)
@ In practice: much fewer iterations needed
@ Typical: O(m) to O(mlog n) iterations
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Implementation: Not How We Did It by Hand

The way we computed pivots manually (parametrizing edges, solving small
systems) is not how simplex is implemented in practice (although you can
certainly implement it that way!).

Real implementations use a compact table of numbers (called a tableau) that
lets the algorithm:

@ test entering and leaving variables instantly,
@ and update everything with fast row operations.
Same exact ideas, but more efficient.
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We Won'’t Implement Simplex Ourselves

Although tableau methods are standard, we won’t code simplex by hand.

In this course we use Gurobi, which already includes:
@ simplex methods,
@ interior-point methods,
@ and other state-of-the-art solvers.

Our focus is on the modelling. Gurobi handles the actual solver
implementation.
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e Linear Programming Duality
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Motivation: Finding Upper Bounds
Example LP:

max4X1—|—X2+3X3 s.t. X1+4X2§1, 3Xq —X2-|—X3§3, X1,X2,X320

Finding Lower Bounds (Easy):
@ Try (x1,x2,Xx3) = (1,0,0): objective = 4. So Z > 4.
@ Try (x1, X2, X3) = (0,0, 3): objective =9. So Z > 9.

Finding Upper Bounds (Harder): Let’s multiply constraint 1 by 2 and constraint
2 by 3:
2(x1 +4x2) <2-1
+ 3(3x1 —x2+x3)<3-3
Sum them: 11x; + 5x2 + 3x3 < 11. Since X1, X2, X3 > 0:
Ax; + Xo +3x3 < 11x1 +5x + 3x3 < 11
So Z < 11. We've bounded the optimum: 9 < Z < 11.
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Getting the Tightest Upper Bound
Question: Can we find better multipliers? Let y;, y» > 0 be multipliers for
constraints 1 and 2:

yi(xi +4x2) < yp - 1
+ Yo(Bxg —Xo+X3) < ¥+ 3

Sum: (y1 +3y2)Xx1 + (4yr — Yo)Xo + YoXxs < y1 + 3)e

For this to upper bound 4x; + x> + 3x3, we need:

4 <y + 3y (coefficient of x;)
1 <4y, —y (coefficient of x)
3<y (coefficient of x3)

Then: 4x; + Xo + 3x3 < (y1 -+ 3y2)x1 + (4y1 — yz)Xg + Voxz < y1 + 3}/2
Goal: Minimize y; 4+ 3y, subject to those constraints on y!
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The Dual Problem Emerges
We naturally arrived at:

Primal (P)
min +3
max 4X; + Xo + 3X3 4 %
st. y1+3>4
st xy+4x <1
4y; — yo > 1
31 — X+ X3 <3
Y2 >3
X1, X2, X3 > 0
Vi, >0

Key Insight:
@ Every feasible y gives an upper bound on the primal optimum
@ The dual finds the best (tightest) upper bound
@ This is duality theory!
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General Duality: Matrix Form
Primal (P) | Dual (D)

maxc'x | minbTy

Ax<b | ATy>c

x>0 y>0

Conversion Rules:
@ Each primal constraint <> one dual variable
@ Each primal variable <+ one dual constraint
@ Primal max «» Dual min
@ Constraint matrix transposes: A — AT
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Duality Rules: The Full Picture

Primal (max ¢ x)

Dual (min b' y)

> ap% < b;
J
> ai% > by
J

> _ajx = b
j

yi>0

X >0
X <0

X free

Key symmetry: the dual of the dual is your original primal.
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Example 1: Building the Dual Step by Step

Primal:

max 95Xy + 3Xo

st.2x;1 +x% <8
X1 +3x <9
X1, X2 > 0

We now construct the dual using the duality rules.
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Example 1: Step 1 — Dual Variables

Primal constraint types = dual variable Primal (for reference)
signs

max 5x1 + 3x2
s.t. 2X1 + X2 S 8
<
2x; + X% <8=y; >0, i+ <9
X1,X >0

Matrix summary
X1 +3x% <9= )y, >0.

Duality rules

Primal Dual
maxc'x | minbTy
aLTrX <b | y>0
a x>b | y<0
a; x="b; | yjfree
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Example 1: Step 2 — Dual Objective

Objective direction: Primal (for reference)

max 5x1 + 3x2
st 2x1+x <8
Xy +3x <9

X1,X2 >0

max — min.

Dual objective uses the RHS values:
Matrix summary

b=(8,9) 2 1 8 5
= e-()e- )
So the dual objective is Duality rules
min 8y; + 9y». mz:inﬁlx miDnu;le

aIXSbi y¥iz0
a x>b | y<0
a; x="b; | yjfree
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Example 1: Step 3 — Dual Constraints

Primal variable signs = dual constraints Primal (for reference)
Xq > O max 5x1 + 3xo
2 > 5 st.2x1 +x <8
y1+y2_ X1 +3x <9
Xo > 0: X1,X2 >0
Vi +3y2 >3

Matrix summary

Duality rules

Primal Dual
maxc' X minbTy
x>0 [(Aly)i>g
<0 | (Aly);<g
xifree | (ATy)j=¢
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Example 1: Final Dual

min 8y + 9y»

st.2y;+y.>5
yi+3y22>3
Yi,¥2 >0

Every coefficient comes directly from the primal via the duality rules.
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Example 2: Mixed Constraints — Dual Variables
Constraint types = dual variable signs Primal:

max 4X1 + 2X2 + X3

Xy 4+ X2+ x3 =10 = yy free St X 4 X + X3 = 10
2X1+ X0 >5

X1, Xo > 0, x3 free

2X1+ X >5= ) <0 Primal summary

Dual objective: A= (; ! 8) b= (150), c= <g>

min 10y; + 5y». Duality rules

Primal Dual
maxc'x | minbTy
3LTFX <b | y=0
a x>bi | yi<0
a; x=>b; | yfree
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Example 2: Mixed Constraints — Dual Constraints

Variable types = dual constraints Primal:
X1 > 0: max 4x1 + 2xo + X3
1-y1+2-y,>4 st Xy + X2+ x3 =10
2Xy+Xx2 >5
X1,X2 > 0, x3 free
Xo > 0

Primal summary

4
1 1 1 10
A<(3 18 e (9) - (3
X3 free 1
1. Y1+ 0- Yo = Duality rules
Primal Dual
maxc' X minby
x>0 [(ATy)i>g
<0 | (ATy);i<g
xifree | (ATy); =¢
37/46
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Example 2: Final Dual

Final dual: Primal:
min10y; + 5y» max 4x; 42X + X3
S.t )2 +2}/2 >4, st.xg+x+x3 =10
- 2X1 + X2 Z 5
Yi +}/222a X1, X2 > 0, x3 free
n= 1 ’ Primal summary
y2<0

Duality rules

Primal Dual
maxc' X minby
x>0 [(ATy)i>g
<0 | (ATy)i<g
xifree | (ATy); =¢
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Theorems of Duality

1. Weak Duality Theorem
For any feasible primal x and any feasible dual y:

c’™x<bly

Primal objective < Dual objective
Proof: If Ax < band ATy > ¢ with x, y > 0:

c’x<(ATy)'x=y"(Ax)<y"b=bTy O
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Theorems of Duality

2. Strong Duality Theorem

If the Primal has an optimal solution x*, then the Dual has an optimal solution y*,
and:
CTX* _ bTy*

At optimality, the objectives are equal—no gap!

Note: Strong duality proof requires more machinery (Farkas’ lemma), but the
result is powerful.
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Visualizing Weak & Strong Duality

Dual Feasible Values

Primal Feasible Values

~

A

Key Insight:
@ Any primal feasible < any dual feasible (weak duality)

@ At optimum, they meet exactly (strong duality)

CS498: Algorithmic Engineering 01/22/2026

Chandra Chekuri & Elfarouk Harb (UIUC)

41/46



© Accessing Duals in Gurobi
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Accessing Duals in Gurobi

We can use Gurobi to perform sensitivity analysis automatically.

# ... (Model definition) ...
m.optimize()

print("Optimal Primal (Production):")
for v in m.getVars():
print(f”"{v.VarName}: {v.X}")

print("\nOptimal Dual:")

for ¢ in m.getConstrs():
# .Pi is the attribute for the Dual Variable (Price)
print(f”{c.ConstrName}: {c.Pi}")

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 43/46



Example: Solving the Primal in Gurobi

Primal (Example 1):
max 95Xy + 3Xo

s.t.2x;1 +x <8
Xy +3x <9
X1, X2 >0

m = gp.Model()

x1 = m.addVar(1b=0, name="x1")
x2 = m.addVar(1lb=0, name="x2")
cl = m.addConstr(2*#x1 + x2 <= 8, name="c1")
c2 = m.addConstr(x1 + 3*x2 <= 9, name="c2")

m.setObjective(5*x1 + 3%x2, gp.GRB.MAXIMIZE)
m.optimize()

print("Optimal primal value:", m.ObjVal)
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Example: Dual Values and Strong Duality

Dual of Example 1: Strong Duality Check
If you run the code, Gurobi returns:

min 8yy + 9y»

st.2y1+y.>5 x*=(3, 2)
Y1 +3y2>3 Zp = 21
Y1, >0 Dual values (from .Pi):

=24 > =0.2
Gurobi gives the dual values as Y IRE

constraint.Pi: Dual objective:

print(”"Dual values (shadow prices):")

print("y1l =", c1.Pi) _

print("y2 =", c2.Pi) 8(24) + 9(02) =21
dual_obj = 8xc1.Pi + 9%c2.Pi Primal optimal = Dual optimal.
print("Dual objective:"”, dual_obj) Strong duallty Veriﬁed!
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Summary: What We Learned

The Simplex Algorithm:
@ Geometrically: walks from vertex to vertex along edges
@ Algebraically: Basic Feasible Solutions (BFS) via pivoting
@ Converges because finite vertices, non-revisiting path
@ Implemented efficiently via Tableau method

Duality Theory:
@ Every LP has a dual that provides upper bounds
@ Weak duality: primal < dual always
@ Strong duality: they meet at optimum (no gap!)
@ Conversion rules for mixed constraint types
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