### CS498: Algorithmic Engineering

Lecture 2: Simplex & Duality

Chandra Chekuri & Elfarouk Harb

University of Illinois Urbana-Champaign

01/22/2026

#### Outline

The Simplex Algorithm

- Linear Programming Duality
- Accessing Duals in Gurobi

The Simplex Algorithm

Linear Programming Duality

Accessing Duals in Gurobi

### How do Solvers actually work?

Last lecture, we defined the LP:

$$\max c^T x$$
 s.t.  $Ax < b$ ,  $x > 0$ 

#### The Fundamental Theorem:

 The optimal solution lies on a Vertex (corner).

#### **Naive Algorithm:**

 List all vertices. Check objective value. Pick max.

**Problem:** A hypercube in n dimensions has  $2^n$  vertices. Too slow.



### How do Solvers actually work (cont'd)?

Last lecture, we defined the LP:

$$\max c^T x$$
 s.t.  $Ax \le b$ ,  $x \ge 0$ 

#### The Fundamental Theorem:

 The optimal solution lies on a Vertex (corner).

#### **Key Insight:**

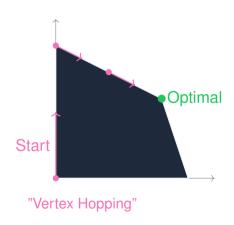
- Vertices are connected by edges.
- We can "walk" from vertex to vertex improving our objective.



### The Simplex Intuition (Hill Climbing)

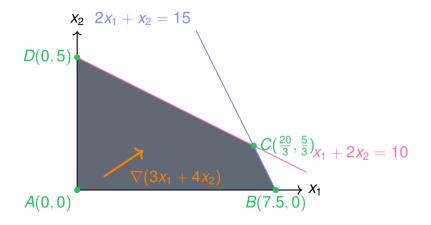
#### Algorithm (Dantzig, 1947):

- Start at any vertex (usually Origin).
- Look along edges connected to current vertex.
- Is a neighbor better?
  - ▶ Yes: Move there (Pivot). Go to 2.
  - No: You are done. (Local max = Global max).



### Geometric View: A 2D Example

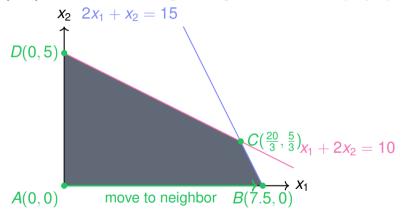
**Example:**  $\max 3x_1 + 4x_2$  subject to:  $x_1 + 2x_2 \le 10, 2x_1 + x_2 \le 15, x_1, x_2 \ge 0.$ 



**Simplex:** pick a basic feasible solution (a vertex), A(0,0) with  $z=3x_1+4x_2=0$ .

### Geometric View: Simplex Walk (Step 1)

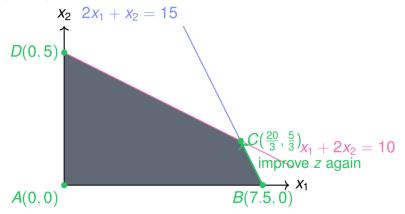
Start at A = (0,0), z = 0. Check neighboring vertices on the polytope.



At B = (7.5, 0):  $z = 3 \cdot 7.5 + 4 \cdot 0 = 22.5 > 0$ , so simplex pivots from A to B.

### Geometric View: Simplex Walk (Step 2)

Now at B = (7.5, 0) with z = 22.5. Check its neighbors on the polytope.



At  $C = \left(\frac{20}{3}, \frac{5}{3}\right)$ ,  $z = 3x_1 + 4x_2 = 3 \cdot \frac{20}{3} + 4 \cdot \frac{5}{3} = \frac{80}{3} \approx 26.7$ No neighbor improves z further  $\Rightarrow$  simplex stops: C is optimal.

#### Vertices and Basic Feasible Solutions

**Setup:** Consider the LP in two variables:

max 
$$z = 3x_1 + 4x_2$$
  
s.t.  $x_1 + 2x_2 \le 10$ ,  
 $2x_1 + x_2 \le 15$ ,  
 $x_1 \ge 0$ ,  $x_2 \ge 0$ .

- The constraints define a **feasible region** (a polygon).
- A vertex is a "corner" of this region.
- Geometrically: at a vertex, we are on the boundary of enough constraints to pin down a single point.

**Key idea:** In 2D, a vertex is the intersection of **2 boundaries**.

### From Geometry to Algebra

#### Boundaries = constraints tight as equalities.

In our example, boundaries include:

$$x_1 = 0$$
,  $x_2 = 0$ ,  $x_1 + 2x_2 = 10$ ,  $2x_1 + x_2 = 15$ .

- To get a vertex in 2D, we choose 2 boundaries and solve them as a system of 2 equations.
- This gives the coordinates of that corner point (if it is feasible).

#### In general:

- In an LP with *m* variables, a vertex comes from *m* tight constraints.
- Solving those *m* equalities gives a single point.

### Examples of Vertices as Intersections

#### **Vertex** A = (0, 0)

• Tight:  $x_1 = 0$  and  $x_2 = 0$ .

#### **Vertex** B = (7.5, 0)

• Tight:  $x_2 = 0$  and  $2x_1 + x_2 = 15 \implies x_1 = 7.5, x_2 = 0.$ 

#### **Vertex** D = (0, 5)

• Tight:  $x_1 = 0$  and  $x_1 + 2x_2 = 10 \implies x_1 = 0, x_2 = 5.$ 

#### Vertex C

• Tight:  $x_1 + 2x_2 = 10$  and  $2x_1 + x_2 = 15 \implies x_1 = \frac{20}{3}, x_2 = \frac{5}{3}$ .

#### Infeasible Pair 1

• Tight:  $x_1 = 0$  and  $2x_1 + x_2 = 15 \implies x_1 = 0, x_2 = 15.$ 

#### Infeasible Pair 2

• Tight:  $x_2 = 0$  and  $x_1 + 2x_2 = 10 \implies x_1 = 10, x_2 = 0.$ 

### Basic Feasible Solutions (Algebraic View)

#### **Basic Feasible Solution**

A point is a basic feasible solution (BFS) if:

- It is **feasible** (satisfies all constraints).
- It is a **vertex** of the feasible region:
  - in m dimensions: it lies at the intersection of m tight constraints (including  $x_i \ge 0$ ), and those m equalities have a unique solution.

#### **Key facts:**

- Every vertex ⇐⇒ a BFS.
- Simplex method moves from one BFS (vertex) to another, improving the objective each time.

### Pivoting from a Vertex: Setup at D

Current vertex:

$$D = (0,5), \quad z(D) = 3 \cdot 0 + 4 \cdot 5 = 20.$$

#### Tight constraints at D:

$$x_1 = 0,$$
  $x_1 + 2x_2 = 10.$ 

These two equalities define *D*.

- To pivot, we relax *one* of them (this gives an edge),
- move along that edge,
- and stop when a new constraint becomes tight.

Goal: choose the edge that **increases** *z*.

### Step 1: Which Edge Improves the Objective?

**Edge 1: keep**  $x_1 = 0$ , relax  $x_1 + 2x_2 = 10$  to  $x_1 + 2x_2 \le 10 \implies x_2 \le 5$ . On this edge:

$$x_1 = 0$$
,  $x_2 = 5 - t$ ,  $t \ge 0$  (moving down from  $D$ ).

Objective:

$$z(t) = 3 \cdot 0 + 4(5-t) = 20-4t.$$

Slope: *z* decreases as *t* increases.

**Edge 2: keep**  $x_1 + 2x_2 = 10$ , relax  $x_1 = 0$  to  $x_1 \ge 0$ .

On this edge:

$$x_1 = t$$
,  $x_2 = \frac{10-t}{2}$ ,  $t \ge 0$  (moving right from  $D$ ).

Objective:  $z(t) = 3t + 4 \cdot \frac{10-t}{2} = 3t + 20 - 2t = 20 + t$ . Slope: z increases as  $t \uparrow$ 

So we pivot along **Edge 2**. (Entering variable:  $x_1$ .)

# Step 2: Which Constraint Becomes Tight First? (Ratio Test)

We move along Edge 2:

$$x_1=t, \qquad x_2=\frac{10-t}{2}, \qquad t\geq 0.$$

Plug this into the other constraints and see when they hit equality.

**Constraint**  $2x_1 + x_2 \le 15$ :

$$2t + \frac{10-t}{2} = 15 \implies \frac{4t+10-t}{2} = 15 \implies 3t+10 = 30 \implies t = \frac{10}{3}.$$

**Constraint**  $x_2 \ge 0$ :  $\frac{10-t}{2} = 0 \implies t = 10$ .

**Constraint**  $x_1 \ge 0$  is fine for all  $t \ge 0$ .

Smallest nonnegative t is  $\frac{10}{3}$ . So the next constraint to become tight is:

$$2x_1 + x_2 = 15.$$

### Step 3: New Vertex = Solve a $2 \times 2$ System

At the new vertex, the tight constraints are:

$$x_1 + 2x_2 = 10,$$
  
 $2x_1 + x_2 = 15.$ 

Solve:

$$x_1=\frac{20}{3}, \quad x_2=\frac{5}{3}.$$

New BFS (after the pivot):

$$C=\Big(\frac{20}{3},\frac{5}{3}\Big).$$

A pivot is literally: change one equation, solve a tiny linear system.

### Repeat the Same Three Steps at the New Vertex

At *C* there are again two tight constraints (two equations). To pivot again, we repeat the same pattern:

- **Ohoose an edge:** Relax one tight constraint, keep the other. Parametrize the edge, compute z(t), pick the edge with increasing z.
- Ratio test: Plug the parametrization into all constraints, solve for t, and find which constraint hits equality first.
- **New vertex:** Replace the old constraint with this new tight constraint, solve the resulting  $2 \times 2$  system.

In m dimensions, it's the same idea: solve m equations, relax one, ratio test, solve a new  $m \times m$  system.

### Degeneracy: When More Than Two Constraints Meet

In 2 variables, a vertex normally comes from **two** tight constraints.

Sometimes, **more than two** constraints happen to be tight at the same point:  $x_1 + x_2 \le 1, x_1 \le 0.5, x_2 \le 0.5$ .

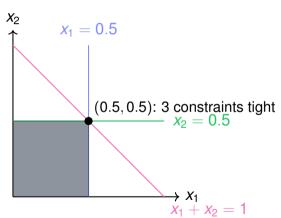
At the point (0.5, 0.5) all three become equalities. What does this mean for simplex?

- A vertex must be described using exactly 2 tight equations.
- But here we have 3 different pairs that all solve to the same point.
- These different pairs lead to different parameterizations of the same vertex.

This situation is called **degeneracy**: the vertex is the unique solution of more equations than needed.

## Degeneracy: Visualizing the Point (0.5, 0.5) Constraints:

$$x_1 + x_2 < 1$$
,  $x_1 < 0.5$ ,  $x_2 < 0.5$ ,  $x_1 > 0$ ,  $x_2 > 0$ 



At (0.5, 0.5), all three constraints are tight, but it is still just *one* vertex  $\Rightarrow$  degeneracy.

### Why Degeneracy Matters for Pivoting

At a degenerate vertex (e.g. (0.5, 0.5)), when simplex tries to pivot:

**Step 1:** Relax one tight constraint to form an edge. But several tight constraints remain; depending on which two you pick, you may be describing the *same* point.

**Step 2:** Ratio test. Because the point already satisfies more than two equations, the "new" constraint might hit equality immediately:

$$t = 0$$
.

**Step 3:** Solve the new linear system. You get the *same* point again:

$$(x_1, x_2) = (0.5, 0.5).$$

This is a **degenerate pivot**: simplex changes which two equations define the vertex but does *not move* in space.

If this happens repeatedly, simplex can "stall" or even cycle (cycling is fixed in practice by Bland's rule and similar tie-breakers).

### Why Simplex Terminates

#### **Convergence Argument:**

- The feasible region is a **polytope** (bounded polyhedron)
- A polytope has finitely many vertices and edges
- Seach pivot moves to an adjacent vertex with strictly better objective (in non-degenerate case)
- We never revisit a vertex (objective strictly improves)
- Must reach optimal vertex in finite steps

#### **Upper Bound on Iterations**

With *m* constraints and *n* variables:

- Maximum  $\binom{m}{n}$  possible bases (assuming all constraints are equalities)
- In practice: much fewer iterations needed
- Typical: O(m) to  $O(m \log n)$  iterations

### Implementation: Not How We Did It by Hand

The way we computed pivots manually (parametrizing edges, solving small systems) is **not** how simplex is implemented in practice (although you can certainly implement it that way!).

Real implementations use a compact **table of numbers** (called a tableau) that lets the algorithm:

- test entering and leaving variables instantly,
- and update everything with fast row operations.

Same exact ideas, but more efficient.

### We Won't Implement Simplex Ourselves

Although tableau methods are standard, we won't code simplex by hand.

In this course we use **Gurobi**, which already includes:

- simplex methods,
- interior-point methods,
- and other state-of-the-art solvers.

Our focus is on the modelling. Gurobi handles the actual solver implementation.

The Simplex Algorithm

Linear Programming Duality

Accessing Duals in Gurobi

### Motivation: Finding Upper Bounds

#### **Example LP:**

$$\max 4x_1 + x_2 + 3x_3$$
 s.t.  $x_1 + 4x_2 \le 1$ ,  $3x_1 - x_2 + x_3 \le 3$ ,  $x_1, x_2, x_3 \ge 0$ 

#### Finding Lower Bounds (Easy):

- Try  $(x_1, x_2, x_3) = (1, 0, 0)$ : objective = 4. So  $Z \ge 4$ .
- Try  $(x_1, x_2, x_3) = (0, 0, 3)$ : objective = 9. So  $Z \ge 9$ .

**Finding Upper Bounds (Harder):** Let's multiply constraint 1 by 2 and constraint 2 by 3:

$$2(x_1 + 4x_2) \le 2 \cdot 1$$
+  $3(3x_1 - x_2 + x_3) \le 3 \cdot 3$ 

Sum them:  $11x_1 + 5x_2 + 3x_3 \le 11$ . Since  $x_1, x_2, x_3 \ge 0$ :

$$4x_1 + x_2 + 3x_3 \le 11x_1 + 5x_2 + 3x_3 \le 11$$

So  $Z \le 11$ . We've bounded the optimum:  $9 \le Z \le 11$ .

### Getting the Tightest Upper Bound

**Question:** Can we find *better* multipliers? Let  $y_1, y_2 \ge 0$  be multipliers for constraints 1 and 2:

$$y_1(x_1 + 4x_2) \le y_1 \cdot 1$$
  
+  $y_2(3x_1 - x_2 + x_3) \le y_2 \cdot 3$ 

Sum: 
$$(y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2$$

For this to upper bound  $4x_1 + x_2 + 3x_3$ , we need:

$$4 \le y_1 + 3y_2$$
 (coefficient of  $x_1$ )  
 $1 \le 4y_1 - y_2$  (coefficient of  $x_2$ )  
 $3 < y_2$  (coefficient of  $x_3$ )

Then: 
$$4x_1 + x_2 + 3x_3 \le (y_1 + 3y_2)x_1 + (4y_1 - y_2)x_2 + y_2x_3 \le y_1 + 3y_2$$

**Goal:** Minimize  $y_1 + 3y_2$  subject to those constraints on y!

### The Dual Problem Emerges

#### We naturally arrived at:

#### Primal (P)

max 
$$4x_1 + x_2 + 3x_3$$
  
s.t.  $x_1 + 4x_2 \le 1$   
 $3x_1 - x_2 + x_3 \le 3$   
 $x_1, x_2, x_3 \ge 0$ 

#### Dual (D)

min 
$$y_1 + 3y_2$$
  
s.t.  $y_1 + 3y_2 \ge 4$   
 $4y_1 - y_2 \ge 1$   
 $y_2 \ge 3$   
 $y_1, y_2 > 0$ 

#### **Key Insight:**

- Every feasible y gives an upper bound on the primal optimum
- The dual finds the best (tightest) upper bound
- This is duality theory!

### General Duality: Matrix Form

| Primal (P)   | Dual (D)       |
|--------------|----------------|
| $\max c^T x$ | $\min b^T y$   |
| $Ax \leq b$  | $A^T y \geq c$ |
| $x \ge 0$    | $y \ge 0$      |

#### **Conversion Rules:**

- Each primal **constraint** ↔ one dual **variable**
- Primal max ↔ Dual min
- Constraint matrix transposes:  $A \rightarrow A^T$

### Duality Rules: The Full Picture

| Primal (max $c^{\top}x$ )           | Dual (min $b^{\top}y$ )                |
|-------------------------------------|----------------------------------------|
| $\sum_{i} a_{ij} x_{j} \leq b_{i}$  | $y_i \ge 0$                            |
| $\sum_{i}^{j}a_{ij}x_{j}\geq b_{i}$ | $y_i \leq 0$                           |
| $\sum_{j}^{j}a_{ij}x_{j}=b_{i}$     | y <sub>i</sub> free                    |
| $x_j \geq 0$                        | $\sum_{i} y_{i} a_{ij} \geq c_{j}$     |
| $x_j \leq 0$                        | $\sum_{i}^{r} y_{i} a_{ij} \leq c_{j}$ |
| $x_j$ free                          | $\sum_{i}^{r} y_{i} a_{ij} = c_{j}$    |

Key symmetry: the dual of the dual is your original primal.

### Example 1: Building the Dual Step by Step

#### Primal:

$$\max 5x_1 + 3x_2$$
s.t.  $2x_1 + x_2 \le 8$ 

$$x_1 + 3x_2 \le 9$$

$$x_1, x_2 \ge 0$$

We now construct the dual using the duality rules.

### Example 1: Step 1 — Dual Variables

## Primal constraint types $\Rightarrow$ dual variable signs

$$2x_1+x_2\leq 8\Rightarrow y_1\geq 0,$$

$$x_1+3x_2\leq 9\Rightarrow y_2\geq 0.$$

#### Primal (for reference)

$$\max 5x_1 + 3x_2$$
s.t.  $2x_1 + x_2 \le 8$ 

$$x_1 + 3x_2 \le 9$$

$$x_1, x_2 \ge 0$$

#### **Matrix summary**

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, b = \begin{pmatrix} 8 \\ 9 \end{pmatrix}, c = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

| Primal                  | Dual                |
|-------------------------|---------------------|
| $\max c^{\top} x$       | $\min b^{\top} y$   |
| $a_i^{\top} x \leq b_i$ | $y_i \geq 0$        |
| $a_i^{	op}x\geq b_i$    | $y_i \leq 0$        |
| $a_i^{\top} x = b_i$    | y <sub>i</sub> free |

### Example 1: Step 2 — Dual Objective

#### **Objective direction:**

 $\max \implies \min$ .

#### **Dual objective uses the RHS values:**

$$b = (8, 9).$$

#### So the dual objective is

min  $8y_1 + 9y_2$ .

#### Primal (for reference)

$$\max 5x_1 + 3x_2$$
s.t.  $2x_1 + x_2 \le 8$ 

$$x_1 + 3x_2 \le 9$$

$$x_1, x_2 > 0$$

#### **Matrix summary**

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, b = \begin{pmatrix} 8 \\ 9 \end{pmatrix}, c = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

| Primal                                                | Dual                    |
|-------------------------------------------------------|-------------------------|
| $\max c^{\top} x$                                     | $\min b^{\top} y$       |
| $a_{i}^{\top}x \leq b_{i}$                            | $y_i \geq 0$            |
| $a_{i}^{\top}x \geq b_{i}$<br>$a_{i}^{\top}x = b_{i}$ | $y_i \leq 0$ $y_i$ free |

### Example 1: Step 3 — Dual Constraints

#### Primal variable signs $\Rightarrow$ dual constraints

 $x_1 \ge 0$ :

$$2y_1+y_2\geq 5$$

 $x_2 \ge 0$ :

$$y_1+3y_2\geq 3$$

#### Primal (for reference)

$$\max 5x_1 + 3x_2$$
s.t.  $2x_1 + x_2 \le 8$ 

$$x_1 + 3x_2 \le 9$$

$$x_1, x_2 > 0$$

#### **Matrix summary**

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}, b = \begin{pmatrix} 8 \\ 9 \end{pmatrix}, c = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$$

| Primal            | Dual                     |
|-------------------|--------------------------|
| $\max c^{\top} x$ | $min b^{	op} y$          |
| $x_j \geq 0$      | $(A^{\top}y)_j \geq c_j$ |
| $x_i \leq 0$      | $(A^{\top}y)_j \leq c_j$ |
| $x_j$ free        | $(A^{\top}y)_j = c_j$    |

### Example 1: Final Dual

min 
$$8y_1 + 9y_2$$
  
s.t.  $2y_1 + y_2 \ge 5$   
 $y_1 + 3y_2 \ge 3$   
 $y_1, y_2 \ge 0$ 

Every coefficient comes directly from the primal via the duality rules.

### Example 2: Mixed Constraints — Dual Variables

#### **Constraint types** ⇒ dual variable signs

$$x_1 + x_2 + x_3 = 10 \Rightarrow y_1$$
 free

$$2x_1+x_2\geq 5\Rightarrow y_2\leq 0$$

#### **Dual objective:**

min 
$$10y_1 + 5y_2$$
.

#### Primal:

max 
$$4x_1 + 2x_2 + x_3$$
  
s.t.  $x_1 + x_2 + x_3 = 10$   
 $2x_1 + x_2 \ge 5$   
 $x_1, x_2 \ge 0, x_3$  free

#### **Primal summary**

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}, b = \begin{pmatrix} 10 \\ 5 \end{pmatrix}, c = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$$

| Primal                  | Dual             |
|-------------------------|------------------|
| $\max c^{\top} x$       | $min b^{\top} y$ |
| $a_i^{\top} x \leq b_i$ | $y_i \geq 0$     |
| $a_i^{\top} x \geq b_i$ | $y_i \leq 0$     |
| $a_i^{\top} x = b_i$    | $y_i$ free       |

### Example 2: Mixed Constraints — Dual Constraints

#### Variable types ⇒ dual constraints

$$x_1 \ge 0$$
:

$$1\cdot y_1+2\cdot y_2\geq 4$$

$$x_2 \ge 0$$
:

$$1\cdot y_1+1\cdot y_2\geq 2$$

 $x_3$  free:

$$1 \cdot y_1 + 0 \cdot y_2 = 1$$

#### Primal:

max 
$$4x_1 + 2x_2 + x_3$$
  
s.t.  $x_1 + x_2 + x_3 = 10$   
 $2x_1 + x_2 \ge 5$   
 $x_1, x_2 \ge 0, x_3$  free

#### **Primal summary**

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}, b = \begin{pmatrix} 10 \\ 5 \end{pmatrix}, c = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$$

| Primal            | Dual                         |
|-------------------|------------------------------|
| $\max c^{\top} x$ | $min b^{	op} y$              |
| $x_j \geq 0$      | $(A^{\top}y)_j \geq c_j$     |
| $x_i \leq 0$      | $(A^{\top}y)_{j} \leq c_{j}$ |
| $x_j$ free        | $(A^{\top}y)_j = c_j$        |

### Example 2: Final Dual

#### Final dual:

$$\begin{aligned} & \min & 10y_1 + 5y_2 \\ & \text{s.t } y_1 + 2y_2 \geq 4, \\ & y_1 + y_2 \geq 2, \\ & y_1 = 1, \\ & y_2 \leq 0 \end{aligned}$$

#### Primal:

max 
$$4x_1 + 2x_2 + x_3$$
  
s.t.  $x_1 + x_2 + x_3 = 10$   
 $2x_1 + x_2 \ge 5$   
 $x_1, x_2 \ge 0, x_3$  free

#### **Primal summary**

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \end{pmatrix}, b = \begin{pmatrix} 10 \\ 5 \end{pmatrix}, c = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$$

| Primal            | Dual                     |
|-------------------|--------------------------|
| $\max c^{\top} x$ | $min b^{	op} y$          |
| $x_j \geq 0$      | $(A^{\top}y)_j \geq c_j$ |
| $x_i \leq 0$      | $(A^{\top}y)_i \leq c_i$ |
| $x_j$ free        | $(A^{\top}y)_j = c_j$    |

### Theorems of Duality

#### 1. Weak Duality Theorem

For any feasible primal x and any feasible dual y:

$$c^T x \leq b^T y$$

Primal objective ≤ Dual objective

**Proof:** If  $Ax \le b$  and  $A^Ty \ge c$  with  $x, y \ge 0$ :

$$c^T x \leq (A^T y)^T x = y^T (Ax) \leq y^T b = b^T y \quad \Box$$

### Theorems of Duality

#### 2. Strong Duality Theorem

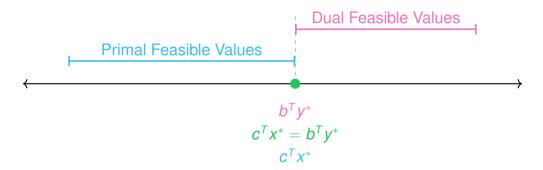
If the Primal has an optimal solution  $x^*$ , then the Dual has an optimal solution  $y^*$ , and:

$$c^T x^* = b^T y^*$$

At optimality, the objectives are equal—no gap!

**Note:** Strong duality proof requires more machinery (Farkas' lemma), but the result is powerful.

### Visualizing Weak & Strong Duality



#### **Key Insight:**

- Any primal feasible ≤ any dual feasible (weak duality)
- At optimum, they meet exactly (strong duality)

The Simplex Algorithm

Linear Programming Duality

Accessing Duals in Gurobi

### Accessing Duals in Gurobi

We can use Gurobi to perform sensitivity analysis automatically.

```
# ... (Model definition) ...
m.optimize()

print("Optimal Primal (Production):")
for v in m.getVars():
    print(f"{v.VarName}: {v.X}")

print("\noptimal Dual:")
for c in m.getConstrs():
    # .Pi is the attribute for the Dual Variable (Price)
    print(f"{c.ConstrName}: {c.Pi}")
```

### Example: Solving the Primal in Gurobi

#### Primal (Example 1):

$$\max 5x_1 + 3x_2$$
s.t.  $2x_1 + x_2 \le 8$ 

$$x_1 + 3x_2 \le 9$$

$$x_1, x_2 \ge 0$$

```
m = gp.Model()
x1 = m.addVar(lb=0, name="x1")
x2 = m.addVar(lb=0, name="x2")
c1 = m.addConstr(2*x1 + x2 <= 8, name="c1")
c2 = m.addConstr(x1 + 3*x2 <= 9, name="c2")
m.setObjective(5*x1 + 3*x2, gp.GRB.MAXIMIZE)
m.optimize()
print("Optimal primal value:", m.ObjVal)</pre>
```

### Example: Dual Values and Strong Duality

#### **Dual of Example 1:**

min 
$$8y_1 + 9y_2$$
  
s.t.  $2y_1 + y_2 \ge 5$   
 $y_1 + 3y_2 \ge 3$   
 $y_1, y_2 \ge 0$ 

#### Gurobi gives the dual values as

constraint.Pi:

```
print("Dual values (shadow prices):")
print("y1 =", c1.Pi)
print("y2 =", c2.Pi)
dual_obj = 8*c1.Pi + 9*c2.Pi
print("Dual objective:", dual_obj)
```

#### **Strong Duality Check**

If you run the code, Gurobi returns:

$$x^* = (3, 2)$$
  
 $z_P^* = 21$ 

Dual values (from .Pi):

$$y_1^* = 2.4, \qquad y_2^* = 0.2$$

Dual objective:

$$8(2.4) + 9(0.2) = 21$$

Primal optimal = Dual optimal. Strong duality verified!

### Summary: What We Learned

#### The Simplex Algorithm:

- Geometrically: walks from vertex to vertex along edges
- Algebraically: Basic Feasible Solutions (BFS) via pivoting
- Converges because finite vertices, non-revisiting path
- Implemented efficiently via Tableau method

#### **Duality Theory:**

- Every LP has a dual that provides upper bounds
- Weak duality: primal ≤ dual always
- Strong duality: they meet at optimum (no gap!)
- Conversion rules for mixed constraint types