
CS498: Algorithmic Engineering
Lecture 2: Simplex & Duality

Chandra Chekuri & Elfarouk Harb

University of Illinois Urbana-Champaign

01/22/2026

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 1 / 46

Outline

1 The Simplex Algorithm

2 Linear Programming Duality

3 Accessing Duals in Gurobi

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 2 / 46

1 The Simplex Algorithm

2 Linear Programming Duality

3 Accessing Duals in Gurobi

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 3 / 46

How do Solvers actually work?
Last lecture, we defined the LP:

max cT x s.t. Ax ≤ b, x ≥ 0

The Fundamental Theorem:
The optimal solution lies on a Vertex
(corner).

Naive Algorithm:
List all vertices. Check objective value. Pick
max.

Problem: A hypercube in n dimensions has
2n vertices. Too slow.

Polytope

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 4 / 46

How do Solvers actually work (cont’d)?
Last lecture, we defined the LP:

max cT x s.t. Ax ≤ b, x ≥ 0

The Fundamental Theorem:
The optimal solution lies on a Vertex
(corner).

Key Insight:
Vertices are connected by edges.

We can ”walk” from vertex to vertex
improving our objective.

Polytope

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 5 / 46

The Simplex Intuition (Hill Climbing)

Algorithm (Dantzig, 1947):

1 Start at any vertex (usually Origin).
2 Look along edges connected to

current vertex.
3 Is a neighbor better?

▶ Yes: Move there (Pivot). Go to 2.
▶ No: You are done. (Local max =

Global max).

Start

Optimal

”Vertex Hopping”

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 6 / 46

Geometric View: A 2D Example
Example: max 3x1 + 4x2 subject to: x1 + 2x2 ≤ 10,2x1 + x2 ≤ 15, x1, x2 ≥ 0.

x1

x2

x1 + 2x2 = 10

2x1 + x2 = 15

∇(3x1 + 4x2)

A(0, 0) B(7.5, 0)

C(20
3 ,

5
3)

D(0, 5)

Simplex: pick a basic feasible solution (a vertex), A(0, 0) with z = 3x1 + 4x2 = 0.
Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 7 / 46

Geometric View: Simplex Walk (Step 1)
Start at A = (0, 0), z = 0. Check neighboring vertices on the polytope.

x1

x2

x1 + 2x2 = 10

2x1 + x2 = 15

A(0, 0) B(7.5, 0)

C(20
3 ,

5
3)

D(0, 5)

move to neighbor

At B = (7.5, 0): z = 3 · 7.5 + 4 · 0 = 22.5 > 0, so simplex pivots from A to B.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 8 / 46

Geometric View: Simplex Walk (Step 2)
Now at B = (7.5, 0) with z = 22.5. Check its neighbors on the polytope.

x1

x2

x1 + 2x2 = 10

2x1 + x2 = 15

A(0, 0) B(7.5, 0)

C(20
3 ,

5
3)

D(0, 5)

improve z again

At C =
(

20
3 ,

5
3

)
, z = 3x1 + 4x2 = 3 · 20

3 + 4 · 5
3 = 80

3 ≈ 26.7
No neighbor improves z further ⇒ simplex stops: C is optimal.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 9 / 46

Vertices and Basic Feasible Solutions
Setup: Consider the LP in two variables:

max z = 3x1 + 4x2

s.t. x1 + 2x2 ≤ 10,
2x1 + x2 ≤ 15,
x1 ≥ 0, x2 ≥ 0.

The constraints define a feasible region (a polygon).
A vertex is a “corner” of this region.
Geometrically: at a vertex, we are on the boundary of enough constraints to
pin down a single point.

Key idea: In 2D, a vertex is the intersection of 2 boundaries.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 10 / 46

From Geometry to Algebra
Boundaries = constraints tight as equalities.

In our example, boundaries include:

x1 = 0, x2 = 0, x1 + 2x2 = 10, 2x1 + x2 = 15.

To get a vertex in 2D, we choose 2 boundaries and solve them as a system
of 2 equations.
This gives the coordinates of that corner point (if it is feasible).

In general:
In an LP with m variables, a vertex comes from m tight constraints.
Solving those m equalities gives a single point.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 11 / 46

Examples of Vertices as Intersections

Vertex A = (0, 0)
Tight: x1 = 0 and x2 = 0.

Vertex B = (7.5, 0)
Tight: x2 = 0 and
2x1 + x2 = 15 =⇒ x1 = 7.5, x2 = 0.

Vertex D = (0, 5)
Tight: x1 = 0 and
x1 + 2x2 = 10 =⇒ x1 = 0, x2 = 5.

Vertex C
Tight: x1 + 2x2 = 10 and
2x1 + x2 = 15 =⇒ x1 = 20

3 , x2 = 5
3 .

Infeasible Pair 1
Tight: x1 = 0 and
2x1 + x2 = 15 =⇒ x1 = 0, x2 = 15.

Infeasible Pair 2
Tight: x2 = 0 and
x1 + 2x2 = 10 =⇒ x1 = 10, x2 = 0.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 12 / 46

Basic Feasible Solutions (Algebraic View)

Basic Feasible Solution
A point is a basic feasible solution (BFS) if:

It is feasible (satisfies all constraints).
It is a vertex of the feasible region:

▶ in m dimensions: it lies at the intersection of m tight constraints (including
xj ≥ 0), and those m equalities have a unique solution.

Key facts:
Every vertex ⇐⇒ a BFS.
Simplex method moves from one BFS (vertex) to another, improving the
objective each time.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 13 / 46

Pivoting from a Vertex: Setup at D

Current vertex:
D = (0, 5), z(D) = 3 · 0 + 4 · 5 = 20.

Tight constraints at D:

x1 = 0, x1 + 2x2 = 10.

These two equalities define D.
To pivot, we relax one of them (this gives an edge),
move along that edge,
and stop when a new constraint becomes tight.

Goal: choose the edge that increases z.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 14 / 46

Step 1: Which Edge Improves the Objective?
Edge 1: keep x1 = 0, relax x1 + 2x2 = 10 to x1 + 2x2 ≤ 10 =⇒ x2 ≤ 5.
On this edge:

x1 = 0, x2 = 5 − t , t ≥ 0 (moving down from D).

Objective:
z(t) = 3 · 0 + 4(5 − t) = 20 − 4t .

Slope: z decreases as t increases.

Edge 2: keep x1 + 2x2 = 10, relax x1 = 0 to x1 ≥ 0.
On this edge:

x1 = t , x2 =
10 − t

2
, t ≥ 0 (moving right from D).

Objective: z(t) = 3t + 4 · 10−t
2 = 3t + 20 − 2t = 20 + t . Slope: z increases as t ↑

So we pivot along Edge 2. (Entering variable: x1.)
Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 15 / 46

Step 2: Which Constraint Becomes Tight First? (Ratio
Test)
We move along Edge 2:

x1 = t , x2 =
10 − t

2
, t ≥ 0.

Plug this into the other constraints and see when they hit equality.
Constraint 2x1 + x2 ≤ 15:

2t +
10 − t

2
= 15 ⇒ 4t + 10 − t

2
= 15 ⇒ 3t + 10 = 30 ⇒ t =

10
3
.

Constraint x2 ≥ 0: 10−t
2 = 0 ⇒ t = 10.

Constraint x1 ≥ 0 is fine for all t ≥ 0.

Smallest nonnegative t is
10
3

. So the next constraint to become tight is:

2x1 + x2 = 15.
Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 16 / 46

Step 3: New Vertex = Solve a 2 × 2 System
At the new vertex, the tight constraints are:

x1 + 2x2 = 10,
2x1 + x2 = 15.

Solve:
x1 =

20
3
, x2 =

5
3
.

New BFS (after the pivot):

C =
(20

3
,
5
3

)
.

A pivot is literally: change one equation, solve a tiny linear system.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 17 / 46

Repeat the Same Three Steps at the New Vertex

At C there are again two tight constraints (two equations). To pivot again, we
repeat the same pattern:

1 Choose an edge: Relax one tight constraint, keep the other. Parametrize
the edge, compute z(t), pick the edge with increasing z.

2 Ratio test: Plug the parametrization into all constraints, solve for t , and find
which constraint hits equality first.

3 New vertex: Replace the old constraint with this new tight constraint, solve
the resulting 2 × 2 system.

In m dimensions, it’s the same idea: solve m equations, relax one, ratio test,
solve a new m × m system.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 18 / 46

Degeneracy: When More Than Two Constraints Meet
In 2 variables, a vertex normally comes from two tight constraints.

Sometimes, more than two constraints happen to be tight at the same point:
x1 + x2 ≤ 1, x1 ≤ 0.5, x2 ≤ 0.5.

At the point (0.5,0.5) all three become equalities. What does this mean for
simplex?

A vertex must be described using exactly 2 tight equations.
But here we have 3 different pairs that all solve to the same point.
These different pairs lead to different parameterizations of the same vertex.

This situation is called degeneracy: the vertex is the unique solution of more
equations than needed.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 19 / 46

Degeneracy: Visualizing the Point (0.5,0.5)
Constraints:

x1 + x2 ≤ 1, x1 ≤ 0.5, x2 ≤ 0.5, x1 ≥ 0, x2 ≥ 0

x1

x2

x1 + x2 = 1

x1 = 0.5

x2 = 0.5
(0.5, 0.5): 3 constraints tight

At (0.5, 0.5), all three constraints are tight, but it is still just one vertex ⇒ degeneracy.
Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 20 / 46

Why Degeneracy Matters for Pivoting
At a degenerate vertex (e.g. (0.5,0.5)), when simplex tries to pivot:
Step 1: Relax one tight constraint to form an edge. But several tight constraints
remain; depending on which two you pick, you may be describing the same point.
Step 2: Ratio test. Because the point already satisfies more than two equations,
the “new” constraint might hit equality immediately:

t = 0.

Step 3: Solve the new linear system. You get the same point again:

(x1, x2) = (0.5, 0.5).

This is a degenerate pivot: simplex changes which two equations define the
vertex but does not move in space.

If this happens repeatedly, simplex can “stall” or even cycle (cycling is fixed in
practice by Bland’s rule and similar tie-breakers).

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 21 / 46

Why Simplex Terminates
Convergence Argument:

1 The feasible region is a polytope (bounded polyhedron)
2 A polytope has finitely many vertices and edges
3 Each pivot moves to an adjacent vertex with strictly better objective (in

non-degenerate case)
4 We never revisit a vertex (objective strictly improves)
5 Must reach optimal vertex in finite steps

Upper Bound on Iterations
With m constraints and n variables:

Maximum
(m

n

)
possible bases (assuming all constraints are equalities)

In practice: much fewer iterations needed
Typical: O(m) to O(m log n) iterations

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 22 / 46

Implementation: Not How We Did It by Hand

The way we computed pivots manually (parametrizing edges, solving small
systems) is not how simplex is implemented in practice (although you can
certainly implement it that way!).

Real implementations use a compact table of numbers (called a tableau) that
lets the algorithm:

test entering and leaving variables instantly,
and update everything with fast row operations.

Same exact ideas, but more efficient.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 23 / 46

We Won’t Implement Simplex Ourselves

Although tableau methods are standard, we won’t code simplex by hand.

In this course we use Gurobi, which already includes:
simplex methods,
interior-point methods,
and other state-of-the-art solvers.

Our focus is on the modelling. Gurobi handles the actual solver
implementation.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 24 / 46

1 The Simplex Algorithm

2 Linear Programming Duality

3 Accessing Duals in Gurobi

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 25 / 46

Motivation: Finding Upper Bounds
Example LP:

max 4x1 + x2 + 3x3 s.t. x1 + 4x2 ≤ 1, 3x1 − x2 + x3 ≤ 3, x1, x2, x3 ≥ 0

Finding Lower Bounds (Easy):
Try (x1, x2, x3) = (1, 0, 0): objective = 4. So Z ≥ 4.
Try (x1, x2, x3) = (0, 0, 3): objective = 9. So Z ≥ 9.

Finding Upper Bounds (Harder): Let’s multiply constraint 1 by 2 and constraint
2 by 3:

2(x1 + 4x2) ≤ 2 · 1
+ 3(3x1 − x2 + x3) ≤ 3 · 3

Sum them: 11x1 + 5x2 + 3x3 ≤ 11. Since x1, x2, x3 ≥ 0:

4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11

So Z ≤ 11. We’ve bounded the optimum: 9 ≤ Z ≤ 11.
Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 26 / 46

Getting the Tightest Upper Bound
Question: Can we find better multipliers? Let y1, y2 ≥ 0 be multipliers for
constraints 1 and 2:

y1(x1 + 4x2) ≤ y1 · 1
+ y2(3x1 − x2 + x3) ≤ y2 · 3

Sum: (y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2

For this to upper bound 4x1 + x2 + 3x3, we need:

4 ≤ y1 + 3y2 (coefficient of x1)
1 ≤ 4y1 − y2 (coefficient of x2)
3 ≤ y2 (coefficient of x3)

Then: 4x1 + x2 + 3x3 ≤ (y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2

Goal: Minimize y1 + 3y2 subject to those constraints on y !
Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 27 / 46

The Dual Problem Emerges
We naturally arrived at:

Primal (P)

max 4x1 + x2 + 3x3

s.t. x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

Dual (D)

min y1 + 3y2

s.t. y1 + 3y2 ≥ 4
4y1 − y2 ≥ 1
y2 ≥ 3
y1, y2 ≥ 0

Key Insight:
Every feasible y gives an upper bound on the primal optimum
The dual finds the best (tightest) upper bound
This is duality theory!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 28 / 46

General Duality: Matrix Form
Primal (P) Dual (D)

max cT x min bT y

Ax ≤ b AT y ≥ c

x ≥ 0 y ≥ 0

Conversion Rules:
Each primal constraint ↔ one dual variable
Each primal variable ↔ one dual constraint
Primal max ↔ Dual min

Constraint matrix transposes: A → AT

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 29 / 46

Duality Rules: The Full Picture
Primal (max c⊤x) Dual (min b⊤y)∑

j

aijxj ≤ bi yi ≥ 0∑
j

aijxj ≥ bi yi ≤ 0∑
j

aijxj = bi yi free

xj ≥ 0
∑

i

yiaij ≥ cj

xj ≤ 0
∑

i

yiaij ≤ cj

xj free
∑

i

yiaij = cj

Key symmetry: the dual of the dual is your original primal.
Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 30 / 46

Example 1: Building the Dual Step by Step

Primal:
max 5x1 + 3x2

s.t. 2x1 + x2 ≤ 8
x1 + 3x2 ≤ 9
x1, x2 ≥ 0

We now construct the dual using the duality rules.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 31 / 46

Example 1: Step 1 — Dual Variables
Primal constraint types ⇒ dual variable
signs

2x1 + x2 ≤ 8 ⇒ y1 ≥ 0,

x1 + 3x2 ≤ 9 ⇒ y2 ≥ 0.

Primal (for reference)
max 5x1 + 3x2

s.t. 2x1 + x2 ≤ 8

x1 + 3x2 ≤ 9

x1, x2 ≥ 0

Matrix summary

A =

(
2 1
1 3

)
, b =

(
8
9

)
, c =

(
5
3

)

Duality rules

Primal Dual
max c⊤x min b⊤y
a⊤

i x ≤ bi yi ≥ 0
a⊤

i x ≥ bi yi ≤ 0
a⊤

i x = bi yi free

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 32 / 46

Example 1: Step 2 — Dual Objective
Objective direction:

max =⇒ min .

Dual objective uses the RHS values:

b = (8, 9).

So the dual objective is

min 8y1 + 9y2.

Primal (for reference)
max 5x1 + 3x2

s.t. 2x1 + x2 ≤ 8

x1 + 3x2 ≤ 9

x1, x2 ≥ 0

Matrix summary

A =

(
2 1
1 3

)
, b =

(
8
9

)
, c =

(
5
3

)

Duality rules

Primal Dual
max c⊤x min b⊤y
a⊤

i x ≤ bi yi ≥ 0
a⊤

i x ≥ bi yi ≤ 0
a⊤

i x = bi yi free

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 33 / 46

Example 1: Step 3 — Dual Constraints
Primal variable signs ⇒ dual constraints
x1 ≥ 0:

2y1 + y2 ≥ 5

x2 ≥ 0:
y1 + 3y2 ≥ 3

Primal (for reference)
max 5x1 + 3x2

s.t. 2x1 + x2 ≤ 8

x1 + 3x2 ≤ 9

x1, x2 ≥ 0

Matrix summary

A =

(
2 1
1 3

)
, b =

(
8
9

)
, c =

(
5
3

)

Duality rules

Primal Dual
max c⊤x min b⊤y

xj ≥ 0 (A⊤y)j ≥ cj
xj ≤ 0 (A⊤y)j ≤ cj
xj free (A⊤y)j = cj

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 34 / 46

Example 1: Final Dual

min 8y1 + 9y2

s.t. 2y1 + y2 ≥ 5
y1 + 3y2 ≥ 3
y1, y2 ≥ 0

Every coefficient comes directly from the primal via the duality rules.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 35 / 46

Example 2: Mixed Constraints — Dual Variables
Constraint types ⇒ dual variable signs

x1 + x2 + x3 = 10 ⇒ y1 free

2x1 + x2 ≥ 5 ⇒ y2 ≤ 0

Dual objective:

min 10y1 + 5y2.

Primal:

max 4x1 + 2x2 + x3

s.t. x1 + x2 + x3 = 10

2x1 + x2 ≥ 5

x1, x2 ≥ 0, x3 free

Primal summary

A =

(
1 1 1
2 1 0

)
, b =

(
10
5

)
, c =

4
2
1


Duality rules

Primal Dual
max c⊤x min b⊤y
a⊤

i x ≤ bi yi ≥ 0
a⊤

i x ≥ bi yi ≤ 0
a⊤

i x = bi yi free

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 36 / 46

Example 2: Mixed Constraints — Dual Constraints
Variable types ⇒ dual constraints
x1 ≥ 0:

1 · y1 + 2 · y2 ≥ 4

x2 ≥ 0:
1 · y1 + 1 · y2 ≥ 2

x3 free:
1 · y1 + 0 · y2 = 1

Primal:

max 4x1 + 2x2 + x3

s.t. x1 + x2 + x3 = 10

2x1 + x2 ≥ 5

x1, x2 ≥ 0, x3 free

Primal summary

A =

(
1 1 1
2 1 0

)
, b =

(
10
5

)
, c =

4
2
1


Duality rules

Primal Dual
max c⊤x min b⊤y

xj ≥ 0 (A⊤y)j ≥ cj
xj ≤ 0 (A⊤y)j ≤ cj
xj free (A⊤y)j = cj

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 37 / 46

Example 2: Final Dual
Final dual:

min10y1 + 5y2

s.t y1 + 2y2 ≥ 4,
y1 + y2 ≥ 2,
y1 = 1,
y2 ≤ 0

Primal:

max 4x1 + 2x2 + x3

s.t. x1 + x2 + x3 = 10

2x1 + x2 ≥ 5

x1, x2 ≥ 0, x3 free

Primal summary

A =

(
1 1 1
2 1 0

)
, b =

(
10
5

)
, c =

4
2
1


Duality rules

Primal Dual
max c⊤x min b⊤y

xj ≥ 0 (A⊤y)j ≥ cj
xj ≤ 0 (A⊤y)j ≤ cj
xj free (A⊤y)j = cj

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 38 / 46

Theorems of Duality

1. Weak Duality Theorem
For any feasible primal x and any feasible dual y :

cT x ≤ bT y

Primal objective ≤ Dual objective

Proof: If Ax ≤ b and AT y ≥ c with x , y ≥ 0:

cT x ≤ (AT y)T x = yT (Ax) ≤ yT b = bT y □

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 39 / 46

Theorems of Duality

2. Strong Duality Theorem
If the Primal has an optimal solution x∗, then the Dual has an optimal solution y∗,
and:

cT x∗ = bT y∗

At optimality, the objectives are equal—no gap!

Note: Strong duality proof requires more machinery (Farkas’ lemma), but the
result is powerful.

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 40 / 46

Visualizing Weak & Strong Duality

Primal Feasible Values

cT x∗

Dual Feasible Values

bT y∗

cT x∗ = bT y∗

Key Insight:
Any primal feasible ≤ any dual feasible (weak duality)
At optimum, they meet exactly (strong duality)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 41 / 46

1 The Simplex Algorithm

2 Linear Programming Duality

3 Accessing Duals in Gurobi

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 42 / 46

Accessing Duals in Gurobi

We can use Gurobi to perform sensitivity analysis automatically.
... (Model definition) ...
m.optimize()

print("Optimal Primal (Production):")
for v in m.getVars():

print(f"{v.VarName}: {v.X}")

print("\nOptimal Dual:")
for c in m.getConstrs():

.Pi is the attribute for the Dual Variable (Price)
print(f"{c.ConstrName}: {c.Pi}")

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 43 / 46

Example: Solving the Primal in Gurobi
Primal (Example 1):

max 5x1 + 3x2

s.t. 2x1 + x2 ≤ 8
x1 + 3x2 ≤ 9
x1, x2 ≥ 0

m = gp.Model()
x1 = m.addVar(lb=0, name="x1")
x2 = m.addVar(lb=0, name="x2")
c1 = m.addConstr(2*x1 + x2 <= 8, name="c1")
c2 = m.addConstr(x1 + 3*x2 <= 9, name="c2")

m.setObjective(5*x1 + 3*x2, gp.GRB.MAXIMIZE)
m.optimize()

print("Optimal primal value:", m.ObjVal)

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 44 / 46

Example: Dual Values and Strong Duality
Dual of Example 1:

min 8y1 + 9y2

s.t. 2y1 + y2 ≥ 5
y1 + 3y2 ≥ 3
y1, y2 ≥ 0

Gurobi gives the dual values as
constraint.Pi:
print("Dual values (shadow prices):")
print("y1 =", c1.Pi)
print("y2 =", c2.Pi)

dual_obj = 8*c1.Pi + 9*c2.Pi
print("Dual objective:", dual_obj)

Strong Duality Check
If you run the code, Gurobi returns:

x∗ = (3, 2)
z∗

P = 21

Dual values (from .Pi):

y∗
1 = 2.4, y∗

2 = 0.2

Dual objective:

8(2.4) + 9(0.2) = 21

Primal optimal = Dual optimal.
Strong duality verified!

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 45 / 46

Summary: What We Learned

The Simplex Algorithm:
Geometrically: walks from vertex to vertex along edges
Algebraically: Basic Feasible Solutions (BFS) via pivoting
Converges because finite vertices, non-revisiting path
Implemented efficiently via Tableau method

Duality Theory:
Every LP has a dual that provides upper bounds
Weak duality: primal ≤ dual always
Strong duality: they meet at optimum (no gap!)
Conversion rules for mixed constraint types

Chandra Chekuri & Elfarouk Harb (UIUC) CS498: Algorithmic Engineering 01/22/2026 46 / 46

	The Simplex Algorithm
	Linear Programming Duality
	Accessing Duals in Gurobi

