
CS498: Algorithmic Engineering
Lecture 5: From LP Relaxations to Integer Solutions

Elfarouk Harb

University of Illinois Urbana-Champaign

Week 03 – 02/03/2026

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 1 / 42



Outline

1 Setup and Motivation

2 From LPs to Integer Programs

3 Example: 0–1 Knapsack

4 Before Branch and Bound: The Naı̈ve Approach

5 Branch and Bound: The Core Idea

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 2 / 42



1 Setup and Motivation

2 From LPs to Integer Programs

3 Example: 0–1 Knapsack

4 Before Branch and Bound: The Naı̈ve Approach

5 Branch and Bound: The Core Idea

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 3 / 42



Where We Are in the Course

Week 02:
Linear programming in depth – duality, sensitivity, LP as approximation.
LP relaxations for Assignment (exact), Vertex Cover (2-approx) and
Independent Set (huge gap).
Assignment problem was special: LP = exact integer solution.

This week:
We want exact integer solutions, not approximations.
We’ll see how solvers enforce integrality.
And why the strength of formulation decides speed.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 4 / 42



Where We Are in the Course

Week 02:
Linear programming in depth – duality, sensitivity, LP as approximation.
LP relaxations for Assignment (exact), Vertex Cover (2-approx) and
Independent Set (huge gap).
Assignment problem was special: LP = exact integer solution.

This week:
We want exact integer solutions, not approximations.
We’ll see how solvers enforce integrality.
And why the strength of formulation decides speed.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 4 / 42



Motivation: Relaxing vs Enforcing Integrality

Recall Vertex Cover LP:

min
∑

v

xv s.t . xu + xv ≥ 1 ∀(u, v) ∈ E , 0 ≤ xv ≤ 1.

LP gave fractional values like xv = 0.5.
But our true decision was binary (cover vertex or not).
Idea: Force xv ∈ {0,1} =⇒ an Integer Program.
LP = “relax your morals.”
IP = “follow the rules exactly.”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 5 / 42



Motivation: Relaxing vs Enforcing Integrality

Recall Vertex Cover LP:

min
∑

v

xv s.t . xu + xv ≥ 1 ∀(u, v) ∈ E , 0 ≤ xv ≤ 1.

LP gave fractional values like xv = 0.5.
But our true decision was binary (cover vertex or not).

Idea: Force xv ∈ {0,1} =⇒ an Integer Program.
LP = “relax your morals.”
IP = “follow the rules exactly.”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 5 / 42



Motivation: Relaxing vs Enforcing Integrality

Recall Vertex Cover LP:

min
∑

v

xv s.t . xu + xv ≥ 1 ∀(u, v) ∈ E , 0 ≤ xv ≤ 1.

LP gave fractional values like xv = 0.5.
But our true decision was binary (cover vertex or not).
Idea: Force xv ∈ {0,1} =⇒ an Integer Program.

LP = “relax your morals.”
IP = “follow the rules exactly.”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 5 / 42



Motivation: Relaxing vs Enforcing Integrality

Recall Vertex Cover LP:

min
∑

v

xv s.t . xu + xv ≥ 1 ∀(u, v) ∈ E , 0 ≤ xv ≤ 1.

LP gave fractional values like xv = 0.5.
But our true decision was binary (cover vertex or not).
Idea: Force xv ∈ {0,1} =⇒ an Integer Program.
LP = “relax your morals.”
IP = “follow the rules exactly.”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 5 / 42



1 Setup and Motivation

2 From LPs to Integer Programs

3 Example: 0–1 Knapsack

4 Before Branch and Bound: The Naı̈ve Approach

5 Branch and Bound: The Core Idea

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 6 / 42



Integer Linear Programs (Definition)

min c⊤x
s.t. Ax ≤ b,

xi ∈ Z for i ∈ I.

Special cases:
All xi continuous or I = ∅ → LP.
xi ∈ {0,1} for i ∈ I → Binary Integer Linear Program.

Usually we only need 0/1 decisions; other integers can be counted in bits.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 7 / 42



Integer Linear Programs (Definition)

min c⊤x
s.t. Ax ≤ b,

xi ∈ Z for i ∈ I.

Special cases:
All xi continuous or I = ∅ → LP.
xi ∈ {0,1} for i ∈ I → Binary Integer Linear Program.

Usually we only need 0/1 decisions; other integers can be counted in bits.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 7 / 42



Integer Linear Programs (Definition)

min c⊤x
s.t. Ax ≤ b,

xi ∈ Z for i ∈ I.

Special cases:
All xi continuous or I = ∅ → LP.
xi ∈ {0,1} for i ∈ I → Binary Integer Linear Program.

Usually we only need 0/1 decisions; other integers can be counted in bits.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 7 / 42



Representing General Integers with Binaries
Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.

Example 1: Enumerated values

x ∈ {−2,−1, 1,2}

represented by binaries y−2, y−1, y1, y2 ∈ {0,1}:

y−2 + y−1 + y1 + y2 = 1, x = −2y−2 − y−1 + y1 + 2y2.

Ensures exactly one discrete value of x is chosen.
Example 2: Large integer range

x ∈ {0, . . . , 20} ⇒ x = y1 + 2y2 + 4y3 + 8y4 + 16y5, yi ∈ {0,1} and x ≤ 20.

Uses binary digits (“bits”) to represent the integer efficiently.
Key point: Solvers enforce integrality through binary representations, so focusing
on binary programs is sufficient in theory and practice.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 8 / 42



Representing General Integers with Binaries
Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.
Example 1: Enumerated values

x ∈ {−2,−1, 1,2}

represented by binaries y−2, y−1, y1, y2 ∈ {0,1}:

y−2 + y−1 + y1 + y2 = 1, x = −2y−2 − y−1 + y1 + 2y2.

Ensures exactly one discrete value of x is chosen.
Example 2: Large integer range

x ∈ {0, . . . , 20} ⇒ x = y1 + 2y2 + 4y3 + 8y4 + 16y5, yi ∈ {0,1} and x ≤ 20.

Uses binary digits (“bits”) to represent the integer efficiently.
Key point: Solvers enforce integrality through binary representations, so focusing
on binary programs is sufficient in theory and practice.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 8 / 42



Representing General Integers with Binaries
Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.
Example 1: Enumerated values

x ∈ {−2,−1, 1,2}

represented by binaries y−2, y−1, y1, y2 ∈ {0,1}:

y−2 + y−1 + y1 + y2 = 1, x = −2y−2 − y−1 + y1 + 2y2.

Ensures exactly one discrete value of x is chosen.
Example 2: Large integer range

x ∈ {0, . . . , 20} ⇒ x = y1 + 2y2 + 4y3 + 8y4 + 16y5, yi ∈ {0,1} and x ≤ 20.

Uses binary digits (“bits”) to represent the integer efficiently.
Key point: Solvers enforce integrality through binary representations, so focusing
on binary programs is sufficient in theory and practice.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 8 / 42



Representing General Integers with Binaries
Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.
Example 1: Enumerated values

x ∈ {−2,−1, 1,2}

represented by binaries y−2, y−1, y1, y2 ∈ {0,1}:

y−2 + y−1 + y1 + y2 = 1, x = −2y−2 − y−1 + y1 + 2y2.

Ensures exactly one discrete value of x is chosen.

Example 2: Large integer range

x ∈ {0, . . . , 20} ⇒ x = y1 + 2y2 + 4y3 + 8y4 + 16y5, yi ∈ {0,1} and x ≤ 20.

Uses binary digits (“bits”) to represent the integer efficiently.
Key point: Solvers enforce integrality through binary representations, so focusing
on binary programs is sufficient in theory and practice.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 8 / 42



Representing General Integers with Binaries
Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.
Example 1: Enumerated values

x ∈ {−2,−1, 1,2}

represented by binaries y−2, y−1, y1, y2 ∈ {0,1}:

y−2 + y−1 + y1 + y2 = 1, x = −2y−2 − y−1 + y1 + 2y2.

Ensures exactly one discrete value of x is chosen.
Example 2: Large integer range

x ∈ {0, . . . , 20} ⇒ x = y1 + 2y2 + 4y3 + 8y4 + 16y5, yi ∈ {0,1} and x ≤ 20.

Uses binary digits (“bits”) to represent the integer efficiently.
Key point: Solvers enforce integrality through binary representations, so focusing
on binary programs is sufficient in theory and practice.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 8 / 42



Representing General Integers with Binaries
Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.
Example 1: Enumerated values

x ∈ {−2,−1, 1,2}

represented by binaries y−2, y−1, y1, y2 ∈ {0,1}:

y−2 + y−1 + y1 + y2 = 1, x = −2y−2 − y−1 + y1 + 2y2.

Ensures exactly one discrete value of x is chosen.
Example 2: Large integer range

x ∈ {0, . . . , 20} ⇒ x = y1 + 2y2 + 4y3 + 8y4 + 16y5, yi ∈ {0,1} and x ≤ 20.

Uses binary digits (“bits”) to represent the integer efficiently.

Key point: Solvers enforce integrality through binary representations, so focusing
on binary programs is sufficient in theory and practice.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 8 / 42



Representing General Integers with Binaries
Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.
Example 1: Enumerated values

x ∈ {−2,−1, 1,2}

represented by binaries y−2, y−1, y1, y2 ∈ {0,1}:

y−2 + y−1 + y1 + y2 = 1, x = −2y−2 − y−1 + y1 + 2y2.

Ensures exactly one discrete value of x is chosen.
Example 2: Large integer range

x ∈ {0, . . . , 20} ⇒ x = y1 + 2y2 + 4y3 + 8y4 + 16y5, yi ∈ {0,1} and x ≤ 20.

Uses binary digits (“bits”) to represent the integer efficiently.
Key point: Solvers enforce integrality through binary representations, so focusing
on binary programs is sufficient in theory and practice.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 8 / 42



Geometry of IPs

x1

x2

LP region

Key idea:
LP feasible set = convex polytope.

IP feasible set = subset of lattice points.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 9 / 42



Geometry of IPs

x1

x2

LP region

Key idea:
LP feasible set = convex polytope.
IP feasible set = subset of lattice points.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 9 / 42



Geometry of IPs

x1

x2

LP region

feasible integer pts

Key idea:
LP feasible set = convex polytope.
IP feasible set = subset of lattice points.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 9 / 42



Geometry of IPs

x1

x2

LP region

feasible integer pts

Key idea:
LP feasible set = convex polytope.
IP feasible set = subset of lattice points.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 9 / 42



Relaxation Relationship

Let FIP be feasible region for IP. Let FLP be feasible region for LP.

For a minimization problem:

LP∗ = min
x∈FLP

c⊤x ≤ min
x∈FIP

c⊤x = IP∗.

For maximization problem:

LP∗ = max
x∈FLP

c⊤x ≥ max
x∈FIP

c⊤x = IP∗.

Meaning: LP solution is an optimistic bound on what’s achievable with integers.
Sometimes bound = exact (answer is already integral, like assignment problem).
Sometimes it’s not → we need to search.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 10 / 42



Relaxation Relationship

Let FIP be feasible region for IP. Let FLP be feasible region for LP.

For a minimization problem:

LP∗ = min
x∈FLP

c⊤x ≤ min
x∈FIP

c⊤x = IP∗.

For maximization problem:

LP∗ = max
x∈FLP

c⊤x ≥ max
x∈FIP

c⊤x = IP∗.

Meaning: LP solution is an optimistic bound on what’s achievable with integers.
Sometimes bound = exact (answer is already integral, like assignment problem).
Sometimes it’s not → we need to search.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 10 / 42



Relaxation Relationship

Let FIP be feasible region for IP. Let FLP be feasible region for LP.

For a minimization problem:

LP∗ = min
x∈FLP

c⊤x ≤ min
x∈FIP

c⊤x = IP∗.

For maximization problem:

LP∗ = max
x∈FLP

c⊤x ≥ max
x∈FIP

c⊤x = IP∗.

Meaning: LP solution is an optimistic bound on what’s achievable with integers.

Sometimes bound = exact (answer is already integral, like assignment problem).
Sometimes it’s not → we need to search.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 10 / 42



Relaxation Relationship

Let FIP be feasible region for IP. Let FLP be feasible region for LP.

For a minimization problem:

LP∗ = min
x∈FLP

c⊤x ≤ min
x∈FIP

c⊤x = IP∗.

For maximization problem:

LP∗ = max
x∈FLP

c⊤x ≥ max
x∈FIP

c⊤x = IP∗.

Meaning: LP solution is an optimistic bound on what’s achievable with integers.
Sometimes bound = exact (answer is already integral, like assignment problem).
Sometimes it’s not → we need to search.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 10 / 42



A Tiny Illustrative IP

min x1 + x2

s.t. 2x1 + 3x2 ≥ 5,
0 ≤ xi ≤ 3, i = 1, 2,
x1, x2 ∈ Z.

LP solution:
x1 = 0, x2 = 5

3 , obj = 5
3 ≈ 1.67.

Best integer solution: (x1, x2) = (1, 1)
(or (0, 2)) ⇒ obj = 2.

Additive gap = 2 − 5
3 = 1

3 ≈ 0.33 ⇒ we’ll
use this gap as a bound.

x1

x2

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 11 / 42



A Tiny Illustrative IP

min x1 + x2

s.t. 2x1 + 3x2 ≥ 5,
0 ≤ xi ≤ 3, i = 1, 2,
x1, x2 ∈ Z.

LP solution:
x1 = 0, x2 = 5

3 , obj = 5
3 ≈ 1.67.

Best integer solution: (x1, x2) = (1, 1)
(or (0, 2)) ⇒ obj = 2.

Additive gap = 2 − 5
3 = 1

3 ≈ 0.33 ⇒ we’ll
use this gap as a bound.

x1

x2

LP opt

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 11 / 42



A Tiny Illustrative IP

min x1 + x2

s.t. 2x1 + 3x2 ≥ 5,
0 ≤ xi ≤ 3, i = 1, 2,
x1, x2 ∈ Z.

LP solution:
x1 = 0, x2 = 5

3 , obj = 5
3 ≈ 1.67.

Best integer solution: (x1, x2) = (1, 1)
(or (0, 2)) ⇒ obj = 2.

Additive gap = 2 − 5
3 = 1

3 ≈ 0.33 ⇒ we’ll
use this gap as a bound.

x1

x2

LP opt

best int

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 11 / 42



A Tiny Illustrative IP

min x1 + x2

s.t. 2x1 + 3x2 ≥ 5,
0 ≤ xi ≤ 3, i = 1, 2,
x1, x2 ∈ Z.

LP solution:
x1 = 0, x2 = 5

3 , obj = 5
3 ≈ 1.67.

Best integer solution: (x1, x2) = (1, 1)
(or (0, 2)) ⇒ obj = 2.

Additive gap = 2 − 5
3 = 1

3 ≈ 0.33 ⇒ we’ll
use this gap as a bound.

x1

x2

LP opt

best int

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 11 / 42



1 Setup and Motivation

2 From LPs to Integer Programs

3 Example: 0–1 Knapsack

4 Before Branch and Bound: The Naı̈ve Approach

5 Branch and Bound: The Core Idea

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 12 / 42



Knapsack Problem

You own a truck with capacity W = 4.

Items:

Item Value vi Weight wi

1 2 1
2 2 2
3 5 2
4 6 3

Which items should we pack to maximize value without exceeding capacity?

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 13 / 42



Knapsack Problem

You own a truck with capacity W = 4.

Items:

Item Value vi Weight wi

1 2 1
2 2 2
3 5 2
4 6 3

Which items should we pack to maximize value without exceeding capacity?

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 13 / 42



Knapsack Problem

You own a truck with capacity W = 4.

Items:

Item Value vi Weight wi

1 2 1
2 2 2
3 5 2
4 6 3

Which items should we pack to maximize value without exceeding capacity?

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 13 / 42



Variables and Model (1/2)

Define binary decision variables:

xi =

{
1 if item i is chosen,
0 otherwise.

Constraint: total weight ≤ 4

x1 + 2x2 + 2x3 + 3x4 ≤ 4.

Objective:
max 2x1 + 2x2 + 5x3 + 6x4.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 14 / 42



Variables and Model (1/2)

Define binary decision variables:

xi =

{
1 if item i is chosen,
0 otherwise.

Constraint: total weight ≤ 4

x1 + 2x2 + 2x3 + 3x4 ≤ 4.

Objective:
max 2x1 + 2x2 + 5x3 + 6x4.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 14 / 42



Variables and Model (1/2)

Define binary decision variables:

xi =

{
1 if item i is chosen,
0 otherwise.

Constraint: total weight ≤ 4

x1 + 2x2 + 2x3 + 3x4 ≤ 4.

Objective:
max 2x1 + 2x2 + 5x3 + 6x4.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 14 / 42



Bruteforce Attempt (2/2)
max 2x1 + 2x2 + 5x3 + 6x4

s.t. x1 + 2x2 + 2x3 + 3x4 ≤ 4,
xi ∈ {0,1}.

Feasible integer solutions (respect weight ≤ 4):
(x1, x2, x3, x4) Weight Value

(0, 0,0, 0) 0 0
(0, 0,0, 1) 3 6
(0, 0,1, 0) 2 5
(0, 1,0, 0) 2 2
(0, 1,1, 0) 4 7
(1, 0,0, 0) 1 2
(1, 0,0, 1) 4 8
(1, 0,1, 0) 3 7
(1, 1,0, 0) 3 4

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 15 / 42



Bruteforce Attempt (2/2)
max 2x1 + 2x2 + 5x3 + 6x4

s.t. x1 + 2x2 + 2x3 + 3x4 ≤ 4,
xi ∈ {0,1}.

Feasible integer solutions (respect weight ≤ 4):
(x1, x2, x3, x4) Weight Value

(0, 0,0, 0) 0 0
(0, 0,0, 1) 3 6
(0, 0,1, 0) 2 5
(0, 1,0, 0) 2 2
(0, 1,1, 0) 4 7
(1, 0,0, 0) 1 2
(1, 0,0, 1) 4 8
(1, 0,1, 0) 3 7
(1, 1,0, 0) 3 4

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 15 / 42



Bruteforce Attempt (2/2)
max 2x1 + 2x2 + 5x3 + 6x4

s.t. x1 + 2x2 + 2x3 + 3x4 ≤ 4,
xi ∈ {0,1}.

Examples of infeasible (too heavy) combinations:

(x1, x2, x3, x4) Weight Value

(0, 0,1, 1) 5 11 (too heavy)
(0, 1,0, 1) 5 8 (too heavy)
(1, 1,1, 1) 8 15 (too heavy)

Best feasible integer solution:

(x1, x2, x3, x4) = (1, 0, 0,1) ⇒ value = 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 16 / 42



Bruteforce Attempt (2/2)
max 2x1 + 2x2 + 5x3 + 6x4

s.t. x1 + 2x2 + 2x3 + 3x4 ≤ 4,
xi ∈ {0,1}.

Examples of infeasible (too heavy) combinations:

(x1, x2, x3, x4) Weight Value

(0, 0,1, 1) 5 11 (too heavy)
(0, 1,0, 1) 5 8 (too heavy)
(1, 1,1, 1) 8 15 (too heavy)

Best feasible integer solution:

(x1, x2, x3, x4) = (1, 0, 0,1) ⇒ value = 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 16 / 42



1 Setup and Motivation

2 From LPs to Integer Programs

3 Example: 0–1 Knapsack

4 Before Branch and Bound: The Naı̈ve Approach

5 Branch and Bound: The Core Idea

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 17 / 42



Brute Force Search Procedure
1 Generate all possible assignments x ∈ {0, 1}k .
2 Check feasibility of each against constraints.
3 Keep the feasible one with best objective.

Pseudo-code:
best_val = float("-inf")
best_x = None
for x in itertools.product([0,1], repeat=k):
if is_feasible(x):

val = objective(x)
if val > best_val:

best_val = val
best_x = x

For k binary variables, that’s 2k possibilities.
Works fine for k ≤ 20 . . . catastrophic after that.
Exponential time: even k = 50 gives 1.1 × 1015 cases.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 18 / 42



Brute Force Search Procedure
1 Generate all possible assignments x ∈ {0, 1}k .
2 Check feasibility of each against constraints.
3 Keep the feasible one with best objective.

Pseudo-code:
best_val = float("-inf")
best_x = None
for x in itertools.product([0,1], repeat=k):

if is_feasible(x):
val = objective(x)
if val > best_val:

best_val = val
best_x = x

For k binary variables, that’s 2k possibilities.
Works fine for k ≤ 20 . . . catastrophic after that.
Exponential time: even k = 50 gives 1.1 × 1015 cases.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 18 / 42



Brute Force Search Procedure
1 Generate all possible assignments x ∈ {0, 1}k .
2 Check feasibility of each against constraints.
3 Keep the feasible one with best objective.

Pseudo-code:
best_val = float("-inf")
best_x = None
for x in itertools.product([0,1], repeat=k):

if is_feasible(x):
val = objective(x)
if val > best_val:

best_val = val
best_x = x

For k binary variables, that’s 2k possibilities.
Works fine for k ≤ 20 . . . catastrophic after that.
Exponential time: even k = 50 gives 1.1 × 1015 cases.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 18 / 42



Why It’s Too Slow

Number of subproblems grows exponentially in number of integer vars.
Most subproblems are infeasible or clearly bad.
We’re wasting time exploring hopeless regions.

Idea for improvement:
Don’t check every integer vector.
Use LP relaxation to bound the best achievable value in a region.
Explore only promising regions → Branch and Bound!

So B&B = “smart brute force guided by LPs.”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 19 / 42



Why It’s Too Slow

Number of subproblems grows exponentially in number of integer vars.
Most subproblems are infeasible or clearly bad.
We’re wasting time exploring hopeless regions.

Idea for improvement:
Don’t check every integer vector.
Use LP relaxation to bound the best achievable value in a region.
Explore only promising regions → Branch and Bound!

So B&B = “smart brute force guided by LPs.”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 19 / 42



Why It’s Too Slow

Number of subproblems grows exponentially in number of integer vars.
Most subproblems are infeasible or clearly bad.
We’re wasting time exploring hopeless regions.

Idea for improvement:
Don’t check every integer vector.
Use LP relaxation to bound the best achievable value in a region.
Explore only promising regions → Branch and Bound!

So B&B = “smart brute force guided by LPs.”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 19 / 42



1 Setup and Motivation

2 From LPs to Integer Programs

3 Example: 0–1 Knapsack

4 Before Branch and Bound: The Naı̈ve Approach

5 Branch and Bound: The Core Idea

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 20 / 42



LP Relaxation

Relax integrality: replace xi ∈ {0,1} with 0 ≤ xi ≤ 1.

max 2x1 + 2x2 + 5x3 + 6x4 s.t. x1 + 2x2 + 2x3 + 3x4 ≤ 4.

Fractional solution:

x1 = 1, x2 = 0, x3 = 1, x4 = 1
3 , zLP = 9.

LP provides an optimistic upper bound of 9: “You can’t do better than 9!”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 21 / 42



LP Relaxation

Relax integrality: replace xi ∈ {0,1} with 0 ≤ xi ≤ 1.

max 2x1 + 2x2 + 5x3 + 6x4 s.t. x1 + 2x2 + 2x3 + 3x4 ≤ 4.

Fractional solution:

x1 = 1, x2 = 0, x3 = 1, x4 = 1
3 , zLP = 9.

LP provides an optimistic upper bound of 9: “You can’t do better than 9!”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 21 / 42



LP Relaxation

Relax integrality: replace xi ∈ {0,1} with 0 ≤ xi ≤ 1.

max 2x1 + 2x2 + 5x3 + 6x4 s.t. x1 + 2x2 + 2x3 + 3x4 ≤ 4.

Fractional solution:

x1 = 1, x2 = 0, x3 = 1, x4 = 1
3 , zLP = 9.

LP provides an optimistic upper bound of 9: “You can’t do better than 9!”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 21 / 42



When LP Is Not Enough

Relaxed LP gives:
an upper bound on the integer optimum (for maximization),
and a fractional solution x∗.

If x∗ is integer — done!

If not, we must somehow enforce integrality by exploring discrete choices.

This is where Branch and Bound (B&B) enters.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 22 / 42



When LP Is Not Enough

Relaxed LP gives:
an upper bound on the integer optimum (for maximization),
and a fractional solution x∗.

If x∗ is integer — done!

If not, we must somehow enforce integrality by exploring discrete choices.

This is where Branch and Bound (B&B) enters.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 22 / 42



When LP Is Not Enough

Relaxed LP gives:
an upper bound on the integer optimum (for maximization),
and a fractional solution x∗.

If x∗ is integer — done!

If not, we must somehow enforce integrality by exploring discrete choices.

This is where Branch and Bound (B&B) enters.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 22 / 42



When LP Is Not Enough

Relaxed LP gives:
an upper bound on the integer optimum (for maximization),
and a fractional solution x∗.

If x∗ is integer — done!

If not, we must somehow enforce integrality by exploring discrete choices.

This is where Branch and Bound (B&B) enters.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 22 / 42



Branch and Bound: Conceptual Loop

Algorithmic skeleton:
1 Solve LP relaxation → gives bound zLP and solution x∗.

2 If x∗ integral → update best integer solution (incumbent).
3 Else, pick a fractional variable xj .
4 Create two branches:

xj = 0, xj = 1.

5 Solve LPs for each subproblem, get new bounds.
6 Prune branches that are infeasible or worse than best integer so far.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 23 / 42



Branch and Bound: Conceptual Loop

Algorithmic skeleton:
1 Solve LP relaxation → gives bound zLP and solution x∗.
2 If x∗ integral → update best integer solution (incumbent).

3 Else, pick a fractional variable xj .
4 Create two branches:

xj = 0, xj = 1.

5 Solve LPs for each subproblem, get new bounds.
6 Prune branches that are infeasible or worse than best integer so far.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 23 / 42



Branch and Bound: Conceptual Loop

Algorithmic skeleton:
1 Solve LP relaxation → gives bound zLP and solution x∗.
2 If x∗ integral → update best integer solution (incumbent).
3 Else, pick a fractional variable xj .

4 Create two branches:
xj = 0, xj = 1.

5 Solve LPs for each subproblem, get new bounds.
6 Prune branches that are infeasible or worse than best integer so far.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 23 / 42



Branch and Bound: Conceptual Loop

Algorithmic skeleton:
1 Solve LP relaxation → gives bound zLP and solution x∗.
2 If x∗ integral → update best integer solution (incumbent).
3 Else, pick a fractional variable xj .
4 Create two branches:

xj = 0, xj = 1.

5 Solve LPs for each subproblem, get new bounds.
6 Prune branches that are infeasible or worse than best integer so far.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 23 / 42



Branch and Bound: Conceptual Loop

Algorithmic skeleton:
1 Solve LP relaxation → gives bound zLP and solution x∗.
2 If x∗ integral → update best integer solution (incumbent).
3 Else, pick a fractional variable xj .
4 Create two branches:

xj = 0, xj = 1.

5 Solve LPs for each subproblem, get new bounds.

6 Prune branches that are infeasible or worse than best integer so far.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 23 / 42



Branch and Bound: Conceptual Loop

Algorithmic skeleton:
1 Solve LP relaxation → gives bound zLP and solution x∗.
2 If x∗ integral → update best integer solution (incumbent).
3 Else, pick a fractional variable xj .
4 Create two branches:

xj = 0, xj = 1.

5 Solve LPs for each subproblem, get new bounds.
6 Prune branches that are infeasible or worse than best integer so far.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 23 / 42



Tracking the Search
Each node in branch-and-bound has its own upper bound.

For a maximization problem, at any node:

Upper Bound UBnode = maxpossible value of the integer solution at that node.

We also maintain the best global integer lower bound found so far, called the
incumbent:

Incumbent LB = max{integer feasible solution found in the search}.

At every node we always have:

LB ≤ z∗
node ≤ UBnode,

where z∗
node is the unknown optimal integer value in that subtree.

At the root, our goal is to shrink the gap UBroot − LB until UBroot = LB, proving
optimality.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 24 / 42



Tracking the Search
Each node in branch-and-bound has its own upper bound.
For a maximization problem, at any node:

Upper Bound UBnode = maxpossible value of the integer solution at that node.

We also maintain the best global integer lower bound found so far, called the
incumbent:

Incumbent LB = max{integer feasible solution found in the search}.

At every node we always have:

LB ≤ z∗
node ≤ UBnode,

where z∗
node is the unknown optimal integer value in that subtree.

At the root, our goal is to shrink the gap UBroot − LB until UBroot = LB, proving
optimality.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 24 / 42



Tracking the Search
Each node in branch-and-bound has its own upper bound.
For a maximization problem, at any node:

Upper Bound UBnode = maxpossible value of the integer solution at that node.

We also maintain the best global integer lower bound found so far, called the
incumbent:

Incumbent LB = max{integer feasible solution found in the search}.

At every node we always have:

LB ≤ z∗
node ≤ UBnode,

where z∗
node is the unknown optimal integer value in that subtree.

At the root, our goal is to shrink the gap UBroot − LB until UBroot = LB, proving
optimality.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 24 / 42



Tracking the Search
Each node in branch-and-bound has its own upper bound.
For a maximization problem, at any node:

Upper Bound UBnode = maxpossible value of the integer solution at that node.

We also maintain the best global integer lower bound found so far, called the
incumbent:

Incumbent LB = max{integer feasible solution found in the search}.

At every node we always have:

LB ≤ z∗
node ≤ UBnode,

where z∗
node is the unknown optimal integer value in that subtree.

At the root, our goal is to shrink the gap UBroot − LB until UBroot = LB, proving
optimality.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 24 / 42



Tracking the Search
Each node in branch-and-bound has its own upper bound.
For a maximization problem, at any node:

Upper Bound UBnode = maxpossible value of the integer solution at that node.

We also maintain the best global integer lower bound found so far, called the
incumbent:

Incumbent LB = max{integer feasible solution found in the search}.

At every node we always have:

LB ≤ z∗
node ≤ UBnode,

where z∗
node is the unknown optimal integer value in that subtree.

At the root, our goal is to shrink the gap UBroot − LB until UBroot = LB, proving
optimality.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 24 / 42



Knapsack Problem at Root
Consider the 0–1 knapsack:

max 2x1 + 2x2 + 5x3 + 6x4

s.t. x1 + 2x2 + 2x3 + 3x4 ≤ 4, xi ∈ {0,1}.

LP relaxation (allow 0 ≤ xi ≤ 1).

x1 = 1, x2 = 0, x3 = 1, x4 = 1
3 ,

zLP = 2 · 1 + 2 · 0 + 5 · 1 + 6 · 1
3 = 2 + 0 + 5 + 2 = 9.

So initially:
UBroot = 9, LB = −∞ (no incumbent yet).

Fractional variable: x4 = 1
3 ⇒ branch on x4.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 25 / 42



Knapsack Problem at Root
Consider the 0–1 knapsack:

max 2x1 + 2x2 + 5x3 + 6x4

s.t. x1 + 2x2 + 2x3 + 3x4 ≤ 4, xi ∈ {0,1}.

LP relaxation (allow 0 ≤ xi ≤ 1).

x1 = 1, x2 = 0, x3 = 1, x4 = 1
3 ,

zLP = 2 · 1 + 2 · 0 + 5 · 1 + 6 · 1
3 = 2 + 0 + 5 + 2 = 9.

So initially:
UBroot = 9, LB = −∞ (no incumbent yet).

Fractional variable: x4 = 1
3 ⇒ branch on x4.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 25 / 42



Knapsack Problem at Root
Consider the 0–1 knapsack:

max 2x1 + 2x2 + 5x3 + 6x4

s.t. x1 + 2x2 + 2x3 + 3x4 ≤ 4, xi ∈ {0,1}.

LP relaxation (allow 0 ≤ xi ≤ 1).

x1 = 1, x2 = 0, x3 = 1, x4 = 1
3 ,

zLP = 2 · 1 + 2 · 0 + 5 · 1 + 6 · 1
3 = 2 + 0 + 5 + 2 = 9.

So initially:
UBroot = 9, LB = −∞ (no incumbent yet).

Fractional variable: x4 = 1
3 ⇒ branch on x4.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 25 / 42



First Branch: Fixing x4

Branch on the fractional variable x4:

Node A: x4 = 1, Node B: x4 = 0.

We will explore:
The left subtree (Node A, x4 = 1) first.
Then the right subtree (Node B, x4 = 0).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 26 / 42



First Branch: Fixing x4

Branch on the fractional variable x4:

Node A: x4 = 1, Node B: x4 = 0.

We will explore:
The left subtree (Node A, x4 = 1) first.
Then the right subtree (Node B, x4 = 0).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 26 / 42



Left Subtree: Node A (x4 = 1)
At Node A, we fix x4 = 1. The constraint becomes:

x1 + 2x2 + 2x3 + 3 · 1 ≤ 4 ⇒ x1 + 2x2 + 2x3 ≤ 1.

The LP relaxation at Node A is:

max 2x1 + 2x2 + 5x3 + 6 · 1 = 6 + 2x1 + 2x2 + 5x3

s.t. x1 + 2x2 + 2x3 ≤ 1, 0 ≤ x1, x2, x3 ≤ 1.

x1 = 0, x2 = 0, x3 = 1
2 , x4 = 1,

zLP = 6 + 5 · 1
2 = 6 + 2.5 = 8.5.

So
UBA = 8.5.

The solution is fractional in x3 ⇒ branch on x3.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 27 / 42



Left Subtree: Node A (x4 = 1)
At Node A, we fix x4 = 1. The constraint becomes:

x1 + 2x2 + 2x3 + 3 · 1 ≤ 4 ⇒ x1 + 2x2 + 2x3 ≤ 1.

The LP relaxation at Node A is:

max 2x1 + 2x2 + 5x3 + 6 · 1 = 6 + 2x1 + 2x2 + 5x3

s.t. x1 + 2x2 + 2x3 ≤ 1, 0 ≤ x1, x2, x3 ≤ 1.

x1 = 0, x2 = 0, x3 = 1
2 , x4 = 1,

zLP = 6 + 5 · 1
2 = 6 + 2.5 = 8.5.

So
UBA = 8.5.

The solution is fractional in x3 ⇒ branch on x3.
Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 27 / 42



Left Subtree: Children of Node A (x4 = 1)
Branch on x3 at Node A:

Node A1: x4 = 1, x3 = 1, Node A2: x4 = 1, x3 = 0.

Node A1: x4 = 1, x3 = 1.

x1 + 2x2 + 2 · 1 + 3 · 1 ≤ 4 ⇒ x1 + 2x2 + 5 ≤ 4 ⇒ x1 + 2x2 ≤ −1,

which is impossible. So Node A1 is infeasible and thus fathomed.
Node A2: x4 = 1, x3 = 0. LP relaxation at Node A2:

max 6 + 2x1 + 2x2 s.t. x1 + 2x2 ≤ 1, 0 ≤ x1, x2 ≤ 1.

The LP solution is x2 = 0, x1 = 1:

x1 = 1, x2 = 0, x3 = 0, x4 = 1, z = 6 + 2 = 8.

This is an integer solution, so we update the incumbent

LB = 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 28 / 42



Left Subtree: Children of Node A (x4 = 1)
Branch on x3 at Node A:

Node A1: x4 = 1, x3 = 1, Node A2: x4 = 1, x3 = 0.

Node A1: x4 = 1, x3 = 1.

x1 + 2x2 + 2 · 1 + 3 · 1 ≤ 4 ⇒ x1 + 2x2 + 5 ≤ 4 ⇒ x1 + 2x2 ≤ −1,

which is impossible. So Node A1 is infeasible and thus fathomed.

Node A2: x4 = 1, x3 = 0. LP relaxation at Node A2:

max 6 + 2x1 + 2x2 s.t. x1 + 2x2 ≤ 1, 0 ≤ x1, x2 ≤ 1.

The LP solution is x2 = 0, x1 = 1:

x1 = 1, x2 = 0, x3 = 0, x4 = 1, z = 6 + 2 = 8.

This is an integer solution, so we update the incumbent

LB = 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 28 / 42



Left Subtree: Children of Node A (x4 = 1)
Branch on x3 at Node A:

Node A1: x4 = 1, x3 = 1, Node A2: x4 = 1, x3 = 0.

Node A1: x4 = 1, x3 = 1.

x1 + 2x2 + 2 · 1 + 3 · 1 ≤ 4 ⇒ x1 + 2x2 + 5 ≤ 4 ⇒ x1 + 2x2 ≤ −1,

which is impossible. So Node A1 is infeasible and thus fathomed.
Node A2: x4 = 1, x3 = 0. LP relaxation at Node A2:

max 6 + 2x1 + 2x2 s.t. x1 + 2x2 ≤ 1, 0 ≤ x1, x2 ≤ 1.

The LP solution is x2 = 0, x1 = 1:

x1 = 1, x2 = 0, x3 = 0, x4 = 1, z = 6 + 2 = 8.

This is an integer solution, so we update the incumbent

LB = 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 28 / 42



Left Subtree: Children of Node A (x4 = 1)
Branch on x3 at Node A:

Node A1: x4 = 1, x3 = 1, Node A2: x4 = 1, x3 = 0.

Node A1: x4 = 1, x3 = 1.

x1 + 2x2 + 2 · 1 + 3 · 1 ≤ 4 ⇒ x1 + 2x2 + 5 ≤ 4 ⇒ x1 + 2x2 ≤ −1,

which is impossible. So Node A1 is infeasible and thus fathomed.
Node A2: x4 = 1, x3 = 0. LP relaxation at Node A2:

max 6 + 2x1 + 2x2 s.t. x1 + 2x2 ≤ 1, 0 ≤ x1, x2 ≤ 1.

The LP solution is x2 = 0, x1 = 1:

x1 = 1, x2 = 0, x3 = 0, x4 = 1, z = 6 + 2 = 8.

This is an integer solution, so we update the incumbent

LB = 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 28 / 42



Left Subtree: Children of Node A (x4 = 1)
Branch on x3 at Node A:

Node A1: x4 = 1, x3 = 1, Node A2: x4 = 1, x3 = 0.

Node A1: x4 = 1, x3 = 1.

x1 + 2x2 + 2 · 1 + 3 · 1 ≤ 4 ⇒ x1 + 2x2 + 5 ≤ 4 ⇒ x1 + 2x2 ≤ −1,

which is impossible. So Node A1 is infeasible and thus fathomed.
Node A2: x4 = 1, x3 = 0. LP relaxation at Node A2:

max 6 + 2x1 + 2x2 s.t. x1 + 2x2 ≤ 1, 0 ≤ x1, x2 ≤ 1.

The LP solution is x2 = 0, x1 = 1:

x1 = 1, x2 = 0, x3 = 0, x4 = 1, z = 6 + 2 = 8.

This is an integer solution, so we update the incumbent

LB = 8.
Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 28 / 42



Summary of Left Subtree (Node A, x4 = 1)
In the left subtree (x4 = 1):

Node A1: infeasible ⇒ UBA1 = −∞.
Node A2: LP solution is integer solution

(x1, x2, x3, x4) = (1, 0, 0,1), z = 8.

So UBA2 = 8 and update global incumbent to LB = 8.

Thus, for Node A overall:

UBA = max{UBA1,UBA2} = max{−∞,8} = 8,

We now turn to the right subtree, Node B (x4 = 0), starting from:

UBroot = 9, LB = 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 29 / 42



Summary of Left Subtree (Node A, x4 = 1)
In the left subtree (x4 = 1):

Node A1: infeasible ⇒ UBA1 = −∞.
Node A2: LP solution is integer solution

(x1, x2, x3, x4) = (1, 0, 0,1), z = 8.

So UBA2 = 8 and update global incumbent to LB = 8.
Thus, for Node A overall:

UBA = max{UBA1,UBA2} = max{−∞,8} = 8,

We now turn to the right subtree, Node B (x4 = 0), starting from:

UBroot = 9, LB = 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 29 / 42



Right Subtree: Node B (x4 = 0)
At Node B, we fix x4 = 0. The constraint simplifies to:

x1 + 2x2 + 2x3 + 3 · 0 ≤ 4 ⇒ x1 + 2x2 + 2x3 ≤ 4.

The LP relaxation at Node B is:

max 2x1 + 2x2 + 5x3

s.t. x1 + 2x2 + 2x3 ≤ 4, 0 ≤ x1, x2, x3 ≤ 1.

x1 = 1, x2 = 1
2 , x3 = 1, x4 = 0,

zLP = 2 · 1 + 2 · 1
2 + 5 · 1 = 2 + 1 + 5 = 8.

So UBB = 8. However, our incumbent is already LB = 8. Therefore
UBB = 8 ≤ LB = 8.
Conclusion: Even though the LP at Node B is fractional, no integer solution in
this subtree can improve the incumbent. We fathom Node B by bound, without
branching further.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 30 / 42



Right Subtree: Node B (x4 = 0)
At Node B, we fix x4 = 0. The constraint simplifies to:

x1 + 2x2 + 2x3 + 3 · 0 ≤ 4 ⇒ x1 + 2x2 + 2x3 ≤ 4.

The LP relaxation at Node B is:

max 2x1 + 2x2 + 5x3

s.t. x1 + 2x2 + 2x3 ≤ 4, 0 ≤ x1, x2, x3 ≤ 1.

x1 = 1, x2 = 1
2 , x3 = 1, x4 = 0,

zLP = 2 · 1 + 2 · 1
2 + 5 · 1 = 2 + 1 + 5 = 8.

So UBB = 8. However, our incumbent is already LB = 8. Therefore
UBB = 8 ≤ LB = 8.
Conclusion: Even though the LP at Node B is fractional, no integer solution in
this subtree can improve the incumbent. We fathom Node B by bound, without
branching further.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 30 / 42



Right Subtree: Node B (x4 = 0)
At Node B, we fix x4 = 0. The constraint simplifies to:

x1 + 2x2 + 2x3 + 3 · 0 ≤ 4 ⇒ x1 + 2x2 + 2x3 ≤ 4.

The LP relaxation at Node B is:

max 2x1 + 2x2 + 5x3

s.t. x1 + 2x2 + 2x3 ≤ 4, 0 ≤ x1, x2, x3 ≤ 1.

x1 = 1, x2 = 1
2 , x3 = 1, x4 = 0,

zLP = 2 · 1 + 2 · 1
2 + 5 · 1 = 2 + 1 + 5 = 8.

So UBB = 8. However, our incumbent is already LB = 8. Therefore
UBB = 8 ≤ LB = 8.
Conclusion: Even though the LP at Node B is fractional, no integer solution in
this subtree can improve the incumbent. We fathom Node B by bound, without
branching further.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 30 / 42



Final Summary of the B&B Tree
We have explored all necessary branches:

Left subtree (Node A, x4 = 1):
▶ Node A1, x3 = 1, x4 = 1: infeasible (fathomed by infeasibility).
▶ Node A2, x3 = 0, x4 = 1: LP solution is integer solution

(x1, x2, x3, x4) = (1, 0, 0,1), z = 8.

This solution becomes the incumbent: LB = 8. No branching.

Right subtree (Node B, x4 = 0):
▶ LP solution at Node B: fractional but with UBB = 8 ≤ LB = 8.
▶ Node B is fathomed by bound without any further branching, even though its

LP solution is not integral.
Update UBroot = max(UBA,UBB) = max(8,8) = 8 = LB. Terminate!

Best integer value found:

z∗ = LB = 8, x∗ = (1,0, 0, 1).

Root bounds at termination: UBroot = 8, LB = 8. Since UBroot = LB, the
branch-and-bound algorithm has proven optimality.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 31 / 42



Final Summary of the B&B Tree
We have explored all necessary branches:

Left subtree (Node A, x4 = 1):
▶ Node A1, x3 = 1, x4 = 1: infeasible (fathomed by infeasibility).
▶ Node A2, x3 = 0, x4 = 1: LP solution is integer solution

(x1, x2, x3, x4) = (1, 0, 0,1), z = 8.

This solution becomes the incumbent: LB = 8. No branching.
Right subtree (Node B, x4 = 0):

▶ LP solution at Node B: fractional but with UBB = 8 ≤ LB = 8.
▶ Node B is fathomed by bound without any further branching, even though its

LP solution is not integral.

Update UBroot = max(UBA,UBB) = max(8,8) = 8 = LB. Terminate!
Best integer value found:

z∗ = LB = 8, x∗ = (1,0, 0, 1).

Root bounds at termination: UBroot = 8, LB = 8. Since UBroot = LB, the
branch-and-bound algorithm has proven optimality.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 31 / 42



Final Summary of the B&B Tree
We have explored all necessary branches:

Left subtree (Node A, x4 = 1):
▶ Node A1, x3 = 1, x4 = 1: infeasible (fathomed by infeasibility).
▶ Node A2, x3 = 0, x4 = 1: LP solution is integer solution

(x1, x2, x3, x4) = (1, 0, 0,1), z = 8.

This solution becomes the incumbent: LB = 8. No branching.
Right subtree (Node B, x4 = 0):

▶ LP solution at Node B: fractional but with UBB = 8 ≤ LB = 8.
▶ Node B is fathomed by bound without any further branching, even though its

LP solution is not integral.
Update UBroot = max(UBA,UBB) = max(8,8) = 8 = LB. Terminate!

Best integer value found:

z∗ = LB = 8, x∗ = (1,0, 0, 1).

Root bounds at termination: UBroot = 8, LB = 8. Since UBroot = LB, the
branch-and-bound algorithm has proven optimality.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 31 / 42



Final Summary of the B&B Tree
We have explored all necessary branches:

Left subtree (Node A, x4 = 1):
▶ Node A1, x3 = 1, x4 = 1: infeasible (fathomed by infeasibility).
▶ Node A2, x3 = 0, x4 = 1: LP solution is integer solution

(x1, x2, x3, x4) = (1, 0, 0,1), z = 8.

This solution becomes the incumbent: LB = 8. No branching.
Right subtree (Node B, x4 = 0):

▶ LP solution at Node B: fractional but with UBB = 8 ≤ LB = 8.
▶ Node B is fathomed by bound without any further branching, even though its

LP solution is not integral.
Update UBroot = max(UBA,UBB) = max(8,8) = 8 = LB. Terminate!

Best integer value found:

z∗ = LB = 8, x∗ = (1,0, 0, 1).

Root bounds at termination: UBroot = 8, LB = 8. Since UBroot = LB, the
branch-and-bound algorithm has proven optimality.Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 31 / 42



Evolving Tree (Stage 1)

Root
LP = 9 (frac)

UBroot = 9, LB = −∞

Node A: x4 = 1
LP = 8.5 (frac)
UBA = 8.5

Node B: x4 = 0
LP = 8 (frac)
UBB = 8

x4 = 1 x4 = 0

Both children are fractional.

We next expand Node A.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 32 / 42



Evolving Tree (Stage 1)

Root
LP = 9 (frac)

UBroot = 9, LB = −∞

Node A: x4 = 1
LP = 8.5 (frac)
UBA = 8.5

Node B: x4 = 0
LP = 8 (frac)
UBB = 8

x4 = 1 x4 = 0

Both children are fractional.

We next expand Node A.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 32 / 42



Evolving Tree (Stage 2a)
Expand Node A (fractional in x3):

Root
LP = 9

UBroot = 9, LB = −∞

A: x4 = 1
LP = 8.5 (frac)
UBA = 8.5

B: x4 = 0
LP = 8 (frac)
UBB = 8

A1: x4 = 1, x3 = 1
infeasible

UBA1 = −∞

A2: x4 = 1, x3 = 0
integer z = 8

UBA2 = 8

Node A1 is infeasible ⇒ it contributes no feasible integer solution.

Node A2 has an integer LP solution with value z = 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 33 / 42



Evolving Tree (Stage 2a)
Expand Node A (fractional in x3):

Root
LP = 9

UBroot = 9, LB = −∞

A: x4 = 1
LP = 8.5 (frac)
UBA = 8.5

B: x4 = 0
LP = 8 (frac)
UBB = 8

A1: x4 = 1, x3 = 1
infeasible

UBA1 = −∞

A2: x4 = 1, x3 = 0
integer z = 8

UBA2 = 8

Node A1 is infeasible ⇒ it contributes no feasible integer solution.

Node A2 has an integer LP solution with value z = 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 33 / 42



Evolving Tree (Stage 2b)
Using the information from A1 and A2, we update bounds at Node A and the root.

Root
LP = 9

UBroot = 9, LB = 8

A: x4 = 1
LP = 8.5 (frac)

UBA = 8

B: x4 = 0
LP = 8 (frac)
UBB = 8

A1: x4 = 1, x3 = 1
infeasible

UBA1 = −∞

A2: x4 = 1, x3 = 0
integer z = 8

UBA2 = 8

From A2, we obtain an incumbent with value z = 8 ⇒ update global LB = 8.
Node A’s subtree cannot contain any solution better than 8, so UBA = 8.

Node B remains active and will be considered next.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 34 / 42



Evolving Tree (Stage 2b)
Using the information from A1 and A2, we update bounds at Node A and the root.

Root
LP = 9

UBroot = 9, LB = 8

A: x4 = 1
LP = 8.5 (frac)

UBA = 8

B: x4 = 0
LP = 8 (frac)
UBB = 8

A1: x4 = 1, x3 = 1
infeasible

UBA1 = −∞

A2: x4 = 1, x3 = 0
integer z = 8

UBA2 = 8

From A2, we obtain an incumbent with value z = 8 ⇒ update global LB = 8.
Node A’s subtree cannot contain any solution better than 8, so UBA = 8.

Node B remains active and will be considered next.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 34 / 42



Evolving Tree (Stage 2b)
Using the information from A1 and A2, we update bounds at Node A and the root.

Root
LP = 9

UBroot = 9, LB = 8

A: x4 = 1
LP = 8.5 (frac)

UBA = 8

B: x4 = 0
LP = 8 (frac)
UBB = 8

A1: x4 = 1, x3 = 1
infeasible

UBA1 = −∞

A2: x4 = 1, x3 = 0
integer z = 8

UBA2 = 8

From A2, we obtain an incumbent with value z = 8 ⇒ update global LB = 8.
Node A’s subtree cannot contain any solution better than 8, so UBA = 8.

Node B remains active and will be considered next.
Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 34 / 42



Evolving Tree (Stage 2c)
Root

LP = 9
UBroot = 8, LB = 8

A: x4 = 1
best integer z = 8

UBA = 8

B: x4 = 0
LP = 8 (frac)

UBB = 8 ≤ LB
pruned by bound

A1: x4 = 1, x3 = 1
infeasible

UBA1 = −∞

A2: x4 = 1, x3 = 0
integer z = 8

UBA2 = 8

Since UBB = 8 ≤ LB = 8, Node B cannot contain any better integer solution.
Node B is fathomed by bound.

Update UBroot = max(UBA,UBB) = max(8,8) = 8.
All nodes are now resolved, and UBroot = LB = 8, proving optimality of the

incumbent x∗ = (1,0, 0, 1) with value 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 35 / 42



Evolving Tree (Stage 2c)
Root

LP = 9
UBroot = 8, LB = 8

A: x4 = 1
best integer z = 8

UBA = 8

B: x4 = 0
LP = 8 (frac)

UBB = 8 ≤ LB
pruned by bound

A1: x4 = 1, x3 = 1
infeasible

UBA1 = −∞

A2: x4 = 1, x3 = 0
integer z = 8

UBA2 = 8

Since UBB = 8 ≤ LB = 8, Node B cannot contain any better integer solution.
Node B is fathomed by bound.

Update UBroot = max(UBA,UBB) = max(8,8) = 8.
All nodes are now resolved, and UBroot = LB = 8, proving optimality of the

incumbent x∗ = (1,0, 0, 1) with value 8.
Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 35 / 42



Bounding and Fathoming Summary

Fathoming rules (for maximization)
A node can be skipped (“fathomed”) if:

LP is infeasible (e.g. Node A1), or
LP bound ≤ incumbent (not worth exploring) [e.g. Node B] (Fathomed by
bound), or
LP solution is integral (update incumbent) [e.g. Node A2].

Each LP bound tightens the global UB.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 36 / 42



Bounding and Fathoming Summary

Fathoming rules (for maximization)
A node can be skipped (“fathomed”) if:

LP is infeasible (e.g. Node A1), or
LP bound ≤ incumbent (not worth exploring) [e.g. Node B] (Fathomed by
bound), or
LP solution is integral (update incumbent) [e.g. Node A2].

Each LP bound tightens the global UB.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 36 / 42



Algorithmic Behavior

Each LP call provides a bound.
Each integer solution provides an incumbent.
We prune aggressively when LP can’t beat the incumbent.

Visualize B&B as a dialogue:

LP: “At best, I can get 11in this node” LB: “I already have 12!”

The gap tells us how much hope remains.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 37 / 42



Algorithmic Behavior

Each LP call provides a bound.
Each integer solution provides an incumbent.
We prune aggressively when LP can’t beat the incumbent.

Visualize B&B as a dialogue:

LP: “At best, I can get 11in this node” LB: “I already have 12!”

The gap tells us how much hope remains.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 37 / 42



Node Selection Strategies

The order that we process nodes in B&B matters. We did the order
root → A → A1 → A2 → B. Two classical options:

Depth-First Search (DFS): quickly finds feasible integers (good for LB).
Best-Bound (Best-First): explores the node with highest current UB bound.

Modern solvers use hybrids: DFS early → Best-Bound once good incumbent
found.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 38 / 42



Node Selection Strategies

The order that we process nodes in B&B matters. We did the order
root → A → A1 → A2 → B. Two classical options:

Depth-First Search (DFS): quickly finds feasible integers (good for LB).
Best-Bound (Best-First): explores the node with highest current UB bound.

Modern solvers use hybrids: DFS early → Best-Bound once good incumbent
found.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 38 / 42



Branching Variable Choice

If there is only one variable that is fractional, just branch on it. But what if there is
more than one?
Which variable to branch on?

Most fractional (xi ≈ 0.5) → balances search.
Greatest effect on objective (pseudo-costs).
Domain-specific heuristics (e.g., branching on vertex degree).

Also, which branch to explore first? (i.e. x3 = 0 or x3 = 1 first?).

Smart branching = smaller tree = faster solve. Tons of heuristics.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 39 / 42



Branching Variable Choice

If there is only one variable that is fractional, just branch on it. But what if there is
more than one?
Which variable to branch on?

Most fractional (xi ≈ 0.5) → balances search.
Greatest effect on objective (pseudo-costs).
Domain-specific heuristics (e.g., branching on vertex degree).

Also, which branch to explore first? (i.e. x3 = 0 or x3 = 1 first?).
Smart branching = smaller tree = faster solve. Tons of heuristics.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 39 / 42



Summary of B&B Workflow

1 Solve LP relaxation.
2 If integral, update incumbent. If fractional → branch.
3 Update bounds (both UB and LB of all nodes).
4 Prune by infeasibility or domination (fathoming).
5 Repeat until UB = LB.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 40 / 42



Gurobi Example: Integer Knapsack

import gurobipy as gp
from gurobipy import GRB

values = [10, 7, 4]
weights = [5, 4, 3]
W = 7

m = gp.Model("knapsack_ip")
x = m.addVars(3, vtype=GRB.BINARY, name="x") #Only new thing

m.addConstr(sum(weights[i]*x[i] for i in range(3)) <= W)
m.setObjective(sum(values[i]*x[i] for i in range(3)), GRB.MAXIMIZE)
m.optimize()

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 41 / 42



Extracting Solver Statistics

After m.optimize():
print("Optimal value:", m.ObjVal)
print("Nodes explored:", m.NodeCount)
print("Best bound:", m.ObjBound)
print("Gap:", m.MIPGap)
for v in x.values():

print(v.VarName, v.X)

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/03/2026 42 / 42


	Setup and Motivation
	From LPs to Integer Programs
	Example: 0–1 Knapsack
	Before Branch and Bound: The Naïve Approach
	Branch and Bound: The Core Idea

