CS498: Algorithmic Engineering

Lecture 5: From LP Relaxations to Integer Solutions

Elfarouk Harb

University of lllinois Urbana-Champaign

Week 03 — 02/03/2026

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 1/42

Outline

ﬂ Setup and Motivation

9 From LPs to Integer Programs

e Example: 0—1 Knapsack

° Before Branch and Bound: The Naive Approach

© Branch and Bound: The Core Idea

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Week 03 — 02/03/2026

2/42

o Setup and Motivation

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Where We Are in the Course

Week 02:

@ Linear programming in depth — duality, sensitivity, LP as approximation.

@ LP relaxations for Assignment (exact), Vertex Cover (2-approx) and
Independent Set (huge gap).

@ Assignment problem was special: LP = exact integer solution.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

4/42

Where We Are in the Course

Week 02:
@ Linear programming in depth — duality, sensitivity, LP as approximation.

@ LP relaxations for Assignment (exact), Vertex Cover (2-approx) and
Independent Set (huge gap).

@ Assignment problem was special: LP = exact integer solution.
This week:

@ We want exact integer solutions, not approximations.

@ We’'ll see how solvers enforce integrality.

@ And why the strength of formulation decides speed.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 4/42

Motivation: Relaxing vs Enforcing Integrality

Recall Vertex Cover LP:

minZXv st.x,+x,>1Y(u,v)eE, 0<x, <1.

v

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 5/42

Motivation: Relaxing vs Enforcing Integrality

Recall Vertex Cover LP:

minY X, stXx,+x >1V(uv)eE 0<x <1.

v

LP gave fractional values like x, = 0.5.
But our true decision was binary (cover vertex or not).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 5/42

Motivation: Relaxing vs Enforcing Integrality

Recall Vertex Cover LP:

minY X, stXx,+x >1V(uv)eE 0<x <1.

v

LP gave fractional values like x, = 0.5.
But our true decision was binary (cover vertex or not).
Idea: Force x, € {0,1} — an Integer Program.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 5/42

Motivation: Relaxing vs Enforcing Integrality

Recall Vertex Cover LP:

mian\, st.x,+x,>1v(u,v)e E,; 0<x, <1.

v

LP gave fractional values like x, = 0.5.

But our true decision was binary (cover vertex or not).
Idea: Force x, € {0,1} = an Integer Program.
LP = “relax your morals.”

IP = “follow the rules exactly.”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 5/42

Q From LPs to Integer Programs

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Integer Linear Programs (Definition)

min ¢ x
s.t. Ax < b,

X; € Zforiel

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Integer Linear Programs (Definition)

min ¢’ x
s.t. Ax < b,
x;e Zforiel
Special cases:
@ All x; continuous or I = () — LP.
@ x; € {0,1} for i € | — Binary Integer Linear Program.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

7/42

Integer Linear Programs (Definition)

min ¢’ x
s.t. Ax < b,
x;e Zforiel
Special cases:
@ All x; continuous or / = () — LP.
@ x; € {0,1} for i € | — Binary Integer Linear Program.
Usually we only need 0/1 decisions; other integers can be counted in bits.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

7/42

Representing General Integers with Binaries
Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 8/42

Representing General Integers with Binaries

Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.

Example 1: Enumerated values

xe{-2-1,1,2}

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 8/42

Representing General Integers with Binaries

Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.

Example 1: Enumerated values

xe{-2-112}
represented by binaries y o,y 1,1, 2 € {0,1}:

y_2+y_1+y1+y2:1, x:—2y_2—y_1+y1+2y2.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 8/42

Representing General Integers with Binaries

Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.

Example 1: Enumerated values
xe{-2,-1.1,2}
represented by binaries y o,y 1, y1,¥2 € {0,1}:

Yot+tYat+tYit+y2=1, X==2Yo—Yy1+)1+2).
Ensures exactly one discrete value of x is chosen.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 8/42

Representing General Integers with Binaries

Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.

Example 1: Enumerated values
xe{-2,-1.1,2}
represented by binaries y o,y 1, y1,¥2 € {0,1}:

Yot+tYat+tYit+y2=1, X==2Yo—Yy1+)1+2).

Ensures exactly one discrete value of x is chosen.
Example 2: Large integer range

x€{0,...,20} = x=y;+2y.+4y3+8ys+16y5, y;€{0,1} and x < 20.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 8/42

Representing General Integers with Binaries

Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.

Example 1: Enumerated values

xe{-2-112}
represented by binaries y o,y 1, y1,¥2 € {0,1}:
Yot+tYat+tYit+y2=1, X==2Yo—Yy1+)1+2).

Ensures exactly one discrete value of x is chosen.
Example 2: Large integer range

x€{0,...,20} = x=y;+2y.+4y3+8ys+16y5, y;€{0,1} and x < 20.

Uses binary digits (“bits”) to represent the integer efficiently.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

8/42

Representing General Integers with Binaries

Even if a variable takes several integer values, solvers internally reduce it to
binary decisions.

Example 1: Enumerated values

xe{-2-112}
represented by binaries y o,y 1, y1,¥2 € {0,1}:
Yot+tYat+tYit+y2=1, X==2Yo—Yy1+)1+2).

Ensures exactly one discrete value of x is chosen.
Example 2: Large integer range

x€{0,...,20} = x=y;+2y.+4y3+8ys+16y5, y;€{0,1} and x < 20.

Uses binary digits (“bits”) to represent the integer efficiently.
Key point: Solvers enforce integrality through binary representations, so focusing
on binary programs is sufficient in theory and practice.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 8/42

Geometry of IPs

X2

LP region

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

X4

Geometry of IPs

X2

LP region

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

X4

Geometry of IPs

X2

LP region

X4

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Geometry of IPs

ible integer pts

LP region

Key idea:
@ LP feasible set = convex polytope.
@ |P feasible set = subset of lattice points.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 9/42

Relaxation Relationship

Let Fjp be feasible region for IP. Let F;p be feasible region for LP.

For a minimization problem:

LP* = min ¢"'x < min ¢'x = IP*.
xeFLp x€Fp

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 10/42

Relaxation Relationship
Let Fjp be feasible region for IP. Let F;p be feasible region for LP.
For a minimization problem:

LP* = xneqli—'?,: c'x < er€1/i__rl1p c'x = IP*.

For maximization problem:

LP* = max ¢' x > maxc'x = IP*.
XGFLP XGF/P

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 10/42

Relaxation Relationship

Let Fjp be feasible region for IP. Let F;p be feasible region for LP.

For a minimization problem:

LP* = min ¢'x < min ¢' x = IP*.
XeFp xeFp

For maximization problem:

LP* = max ¢' x > maxc'x = IP*.
XEEFlP XGEFVP

Meaning: LP solution is an optimistic bound on what’s achievable with integers.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

10/42

Relaxation Relationship

Let Fjp be feasible region for IP. Let F;p be feasible region for LP.

For a minimization problem:

LP* = min ¢'x < min ¢' x = IP*.
XeFp XeFp

For maximization problem:

LP* = max ¢' x > maxc'x = IP*.
XEEFlP XGEFVP

Meaning: LP solution is an optimistic bound on what’s achievable with integers.
Sometimes bound = exact (answer is already integral, like assignment problem).

Sometimes it’s not — we need to search.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

10/42

A Tiny lllustrative IP

min - Xy + Xo
s.t. 2xy +3xx > 5,

. X
OSXIS?’) I:1727 ’

l
X1, Xo € 7.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

A Tiny lllustrative IP

min - Xy + Xo
s.t. 2xy +3xx > 5,
0<x<3, i=1,2,

X1, X € Z. i
LP solution: * ot o o
X =0, X =2, obj= 2~ 1.67.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 11/42

A Tiny lllustrative IP

min - Xy + Xo
s.t. 2xy +3xx > 5,
0<x <3, i=1,2,

X1, Xo € 7. | : : [
LP solution: TlFept "
X; =0, Xo = % obj = g ~ 1.67. best int
Best integer solution: (x;, x) = (1,1) N
(or (0,2)) = obj =2 L

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 11/42

A Tiny lllustrative IP

min - Xy + Xo
s.t. 2xy +3xx > 5,
0<x <3, i=1,2,

X1, X2 € Z. U
LP solution: P irop: 1
5 H 5 ~o
X1 = O7 Xo = 35 Obj =3~ 1.67. best int
() [)

Best integer solution: (x;, x2) = (1,1)
(or (0,2)) = obj = 2.

Additive gap =2 — 2 = 1 ~ 0.33 = we'll
use this gap as a bound.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 11/42

e Example: 0—1 Knapsack

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Knapsack Problem

You own a truck with capacity W = 4.

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Knapsack Problem

You own a truck with capacity W = 4.
ltems:

ltem Value v; Weight w;
2 1

]
2 2 2
3 5 2
4 6 3

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 13/42

Knapsack Problem

You own a truck with capacity W = 4.

ltems:

Which items should we pack to maximize value without exceeding capacity?

Elfarouk Harb (UIUC)

ltem Value v; Weight w;
1 2 1
2 2 2
3 5 2
4 6 3

CS498: Algorithmic Engineering

Week 03 — 02/03/2026

13/42

Variables and Model (1/2)

Define binary decision variables:

1 if item 7 is chosen,
" 10 otherwise.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 14/42

Variables and Model (1/2)

Define binary decision variables:

~_J1 ifitem/is chosen,
" 10 otherwise.

Constraint: total weight < 4

Xy + 2X2 +2X3 +3X4 < 4.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 14/42

Variables and Model (1/2)

Define binary decision variables:

~_J1 ifitem/is chosen,
" 10 otherwise.
Constraint: total weight < 4
Xy + 2X2 + 2X3 + 3X4 < 4.

Objective:
max 2X1 + 2X2 + 5X3 + 6X4.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 14/42

Bruteforce Attempt (2/2)

max 2X1 + 2Xo + 5X3 + 6X,

S.t. Xq +2X + 2x3 + 3x4 < 4,
X € {0, 1}

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Bruteforce Attempt (2/2)
max 2X1 + 2Xo + 5X3 + 6X,
S.t. X1 +2x0 4+ 2X3 + 3x4 < 4,
X € {0, 1}

Feasible integer solutions (respect weight < 4):
(x1, X2, X3, X4) Weight Value
(0,0,0,0) 0 0
(0,0,0,1) 3 6
(0,0,1,0) 2 5
(0,1,0,0) 2 2
(0,1,1,0) 4 7
(1,0,0,0) 1 2
(1,0,0,1) 4 8
(1,0,1,0) 3 7
(1,1,0,0) 3 4

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 15/42

Bruteforce Attempt (2/2)

max 2X1 + 2Xo + 95Xz + 6X,
S.t. Xy +2x + 2Xx3 + 3x4 < 4,
xj € {0,1}.
Examples of infeasible (too heavy) combinations:

(X1, X2, X3, X4) Weight Value

(0,0,1,1) 5 11 (too heavy)
(0,1,0,1) 5 8 (too heavy)
(1,1,1,1) 8 15 (too heavy)

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

16/42

Bruteforce Attempt (2/2)

max 2X1 + 2Xo + 95Xz + 6X,
S.t. Xy +2x + 2Xx3 + 3x4 < 4,
xj € {0,1}.
Examples of infeasible (too heavy) combinations:

Best feasible integer solution:

(X1, X2, X3, Xa)

Elfarouk Harb (UIUC)

(X1, X2, X3, X4) Weight Value

(0,0,1,1) 5 11 (too heavy)
(0,1,0,1) 5 8 (too heavy)
(1,1,1,1) 8 15 (too heavy)

=(1,0,0,1) = value =8.

CS498: Algorithmic Engineering Week 03 — 02/03/2026

16/42

0 Before Branch and Bound: The Naive Approach

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Brute Force Search Procedure

@ Generate all possible assignments x € {0, 1}.
@ Check feasibility of each against constraints.
© Keep the feasible one with best objective.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

18/42

Brute Force Search Procedure

@ Generate all possible assignments x € {0, 1}.
@ Check feasibility of each against constraints.
© Keep the feasible one with best objective.

Pseudo-code:

best_val = float("-inf")
best_x = None
for x in itertools.product([0,1], repeat=k):
if is_feasible(x):
val = objective(x)
if val > best_val:
best_val = val
best_x = x

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

18/42

Brute Force Search Procedure

@ Generate all possible assignments x € {0, 1}.
@ Check feasibility of each against constraints.
@ Keep the feasible one with best objective.

Pseudo-code:

best_val = float("-inf")
best_x = None
for x in itertools.product([0,1], repeat=k):
if is_feasible(x):
val = objective(x)
if val > best_val:
best_val = val
best_x = x

For k binary variables, that's 2% possibilities.
Works fine for k < 20 ... catastrophic after that.
Exponential time: even k = 50 gives 1.1 x 10" cases.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

18/42

Why It’'s Too Slow

@ Number of subproblems grows exponentially in number of integer vars.
@ Most subproblems are infeasible or clearly bad.
@ We’re wasting time exploring hopeless regions.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 19/42

Why It’'s Too Slow

@ Number of subproblems grows exponentially in number of integer vars.

@ Most subproblems are infeasible or clearly bad.
@ We're wasting time exploring hopeless regions.
Idea for improvement:
@ Don’t check every integer vector.
@ Use LP relaxation to bound the best achievable value in a region.
@ Explore only promising regions — Branch and Bound!

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

19/42

Why It’'s Too Slow

@ Number of subproblems grows exponentially in number of integer vars.

@ Most subproblems are infeasible or clearly bad.
@ We're wasting time exploring hopeless regions.
Idea for improvement:
@ Don’t check every integer vector.
@ Use LP relaxation to bound the best achievable value in a region.
@ Explore only promising regions — Branch and Bound!
So B&B = “smart brute force guided by LPs.”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

19/42

© Branch and Bound: The Core Idea

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

LP Relaxation

Relax integrality: replace x; € {0,1} with 0 < x; < 1.

max 2X1 + 2X2 + 5X3 + 6X4 s.t. x1 + 2X2 + 2X3 + 3X4 <4

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 21/42

LP Relaxation

Relax integrality: replace x; € {0,1} with 0 < x; < 1.

max 2X1 + 2X2 + 5X3 + 6X4

s.t. x1 + 2X2 + 2X3 + 3X4 <4
Fractional solution:

1
X1:17X2207X3:17X4:§7 ZLP:9'

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Week 03 — 02/03/2026 21/42

LP Relaxation

Relax integrality: replace x; € {0,1} with 0 < x; < 1.
max 2X1 + 2X2 + 5X3 + 6X4 s.t. x1 + 2X2 + 2X3 + 3X4 <4
Fractional solution:

Xxx=1,%=0 x3=1 x= zZip = 9.

1
3

LP provides an optimistic upper bound of 9: “You can’t do better than 9!”

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 21/42

When LP Is Not Enough

Relaxed LP gives:
@ an upper bound on the integer optimum (for maximization),
@ and a fractional solution x*.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 22/42

When LP Is Not Enough

Relaxed LP gives:
@ an upper bound on the integer optimum (for maximization),
@ and a fractional solution x*.

If x* is integer — done!

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 22/42

When LP Is Not Enough

Relaxed LP gives:
@ an upper bound on the integer optimum (for maximization),
@ and a fractional solution x*.

If x* is integer — done!

If not, we must somehow enforce integrality by exploring discrete choices.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 22/42

When LP Is Not Enough

Relaxed LP gives:
@ an upper bound on the integer optimum (for maximization),
@ and a fractional solution x*.

If x* is integer — done!

If not, we must somehow enforce integrality by exploring discrete choices.

This is where Branch and Bound (B&B) enters.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 22/42

Branch and Bound: Conceptual Loop

Algorithmic skeleton:
@ Solve LP relaxation — gives bound z,p and solution x*.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 23/42

Branch and Bound: Conceptual Loop

Algorithmic skeleton:
@ Solve LP relaxation — gives bound z,p and solution x*.
@ If x* integral — update best integer solution (incumbent).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 23/42

Branch and Bound: Conceptual Loop

Algorithmic skeleton:
@ Solve LP relaxation — gives bound z,p and solution x*.
@ If x* integral — update best integer solution (incumbent).
© Else, pick a fractional variable x;.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 23/42

Branch and Bound: Conceptual Loop

Algorithmic skeleton:
@ Solve LP relaxation — gives bound z,p and solution x*.
@ If x* integral — update best integer solution (incumbent).
© Else, pick a fractional variable x;.
© Create two branches:

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

23/42

Branch and Bound: Conceptual Loop

Algorithmic skeleton:
@ Solve LP relaxation — gives bound z,p and solution x*.
@ If x* integral — update best integer solution (incumbent).
© Else, pick a fractional variable x;.
© Create two branches:

@ Solve LPs for each subproblem, get new bounds.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 23/42

Branch and Bound: Conceptual Loop

Algorithmic skeleton:
@ Solve LP relaxation — gives bound z,p and solution x*.
Q@ If x* integral — update best integer solution (incumbent).
© Else, pick a fractional variable x;.
© Create two branches:

@ Solve LPs for each subproblem, get new bounds.
© Prune branches that are infeasible or worse than best integer so far.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 23/42

Tracking the Search

Each node in branch-and-bound has its own upper bound.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 24/42

Tracking the Search
Each node in branch-and-bound has its own upper bound.
For a maximization problem, at any node:

Upper Bound UB,,¢e = max possible value of the integer solution at that node.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 24/42

Tracking the Search
Each node in branch-and-bound has its own upper bound.
For a maximization problem, at any node:

Upper Bound UB,,¢e = max possible value of the integer solution at that node.

We also maintain the best global integer lower bound found so far, called the
incumbent.

Incumbent LB = max{integer feasible solution found in the search}.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 24/42

Tracking the Search
Each node in branch-and-bound has its own upper bound.
For a maximization problem, at any node:

Upper Bound UB,,¢e = max possible value of the integer solution at that node.

We also maintain the best global integer lower bound found so far, called the
incumbent.

Incumbent LB = max{integer feasible solution found in the search}.
At every node we always have:
LB < Zy4e < UBioge,

where z_ . is the unknown optimal integer value in that subtree.

node

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

24/42

Tracking the Search
Each node in branch-and-bound has its own upper bound.
For a maximization problem, at any node:

Upper Bound UB,,¢e = max possible value of the integer solution at that node.

We also maintain the best global integer lower bound found so far, called the
incumbent.

Incumbent LB = max{integer feasible solution found in the search}.
At every node we always have:
LB < Zy4e < UBioge,

where z; . is the unknown optimal integer value in that subtree.

At the root, our goal is to shrink the gap UB,oot — LB until UB,yot = LB, proving
optimality.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

24/42

Knapsack Problem at Root
Consider the 0—1 knapsack:

max 2X1 + 2Xo + 95Xz + 6X4

St X1 +2x% +2x3+3x4 <4, X € {O, 1}

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 25/42

Knapsack Problem at Root
Consider the 0—1 knapsack:

max 2X1 + 2Xo + 95Xz + 6X4

St X1 +2x% +2x3+3x4 <4, X € {O, 1}

LP relaxation (allow 0 < x; < 1).

Xxx=1, x=0, x3=1, Xx4=

Y

w|—=

ZLP=2-1+2-0+5-1+6-%=2+0+5+2=9.

So initially:
UBoot =9, LB = —oo (noincumbent yet).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

25/42

Knapsack Problem at Root
Consider the 0—1 knapsack:

max 2X1 + 2Xo + 95Xz + 6X4

St X1 +2x% +2x3+3x4 <4, X € {O, 1}
LP relaxation (allow 0 < x; < 1).

Xxx=1, x=0, x3=1, Xx4=

Y

w|—=

ZLP=2-1+2-0+5-1+6-%=2+0+5+2=9.

So initially:
UBoot =9, LB = —oo (noincumbent yet).

Fractional variable: x4 = % = branch on x;.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

25/42

First Branch: Fixing x4

Branch on the fractional variable x,:

Node A: x4, =1, Node B: x4, = 0.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 26/42

First Branch: Fixing x4

Branch on the fractional variable x,:
Node A: x4, =1, Node B: x4, = 0.

We will explore:
@ The left subtree (Node A, x4 = 1) first.
@ Then the right subtree (Node B, x4 = 0).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 26/42

Left Subtree: Node A (x4 = 1)

At Node A, we fix x4, = 1. The constraint becomes:

Xg+2X +2x3+3-1<4 = Xy +2Xx +2x3 < 1.
The LP relaxation at Node A is:

max 2X; +2Xo +5x3+6-1 =6 +2x; +2Xo + 5X3

St xi+2x%+2x3<1, 0<Xxq,X,Xx3<1.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

27/42

Left Subtree: Node A (x4 = 1)

At Node A, we fix x4, = 1. The constraint becomes:

Xg+2X +2x3+3-1<4 = Xy +2Xx +2x3 < 1.

The LP relaxation at Node A is:

max 2X; +2Xo +5x3+6-1 =6 +2x; +2Xo + 5X3

St xi+2x%+2x3<1, 0<Xxq,X,Xx3<1.

X1=0,%=0 X%=1 x=1,
Zp=6+5-7=6+25=85.
So
UB4 = 85.
The solution is fractional in x3 = branch on xs.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 27/42

Left Subtree: Children of Node A (x4 = 1)

Branch on x; at Node A:
Node A1: x4 =1, x3 =1, Node A2: x4, =1, x3 = 0.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 28/42

Left Subtree: Children of Node A (x4 = 1)

Branch on x; at Node A:
Node Al: x4 =1, x3 =1, Node A2: x4, =1, x3 = 0.
Node A1: x; =1, x3=1.
X1+2%+2-14+43-1<4 = xy+2%+5<4 = x;+2x% < -1,
which is impossible. So Node A1 is infeasible and thus fathomed.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 28/42

Left Subtree: Children of Node A (x4 = 1)

Branch on x3 at Node A:
Node Al: x4 =1, x3 =1, Node A2: x4, =1, x3 =0.
Node A1: x;, =1, x3 =1.
X1+2%+2-14+43-1<4 = xy+2%+5<4 = x;+2x% < -1,

which is impossible. So Node A1 is infeasible and thus fathomed.
Node A2: x;, =1, x3 = 0. LP relaxation at Node A2:

max 6—|—2X1—|—2X2 s.t. X1+2X2S1, O§X1,X2§1.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 28/42

Left Subtree: Children of Node A (x4 = 1)

Branch on x3 at Node A:
Node Al: x4 =1, x3 =1, Node A2: x4, =1, x3 =0.
Node A1: x;, =1, x3 =1.
X1+2%+2-14+43-1<4 = xy+2%+5<4 = x;+2x% < -1,

which is impossible. So Node A1 is infeasible and thus fathomed.
Node A2: x;, =1, x3 = 0. LP relaxation at Node A2:

max 6—|—2X1 —|—2X2 s.t. x4 +2X2 < 1, O§X1,X2§ 1.
The LP solutionis xo =0, x; = 1:

X3=1,%=0 x3=0,x=1, z=6+2=28.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 28/42

Left Subtree: Children of Node A (x4 = 1)

Branch on x3 at Node A:
Node Al: x4 =1, x3 =1, Node A2: x, =1, x3 =0.
Node A1: x; =1, x3=1.
X1 +2%+2-143:1<4 = x14+2%+5<4 = x;+2x < —1,

which is impossible. So Node A1 is infeasible and thus fathomed.
Node A2: x;, =1, x3 = 0. LP relaxation at Node A2:

max 6 +2x; +2x> St X;+2x% <1, 0 <Xy, x < 1.
The LP solutionis x, =0, x; = 1:
X1=1,%=0,x3=0 x=1 z=6+2=28.
This is an integer solution, so we update the incumbent
LB =38.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

28/42

Summary of Left Subtree (Node A, x4 = 1)
In the left subtree (x4 = 1):

@ Node A1: infeasible = UBji = —o0.

@ Node A2: LP solution is integer solution

(X1>X2>X37X4):(1707071)7 z=38.

So UBa»> = 8 and update global incumbent to LB = 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

29/42

Summary of Left Subtree (Node A, x4 = 1)
In the left subtree (x4 = 1):

@ Node A1: infeasible = UBji = —o0.

@ Node A2: LP solution is integer solution

(X17X27X37X4):(1707071)7 z=38.

So UBx, = 8 and update global incumbent to LB = 8.
Thus, for Node A overall:

UBjx = max{UBa1, UBa2} = max{—o0,8} = 8,
We now turn to the right subtree, Node B (x; = 0), starting from:

UBroot — 9, LB — 8

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

29/42

Right Subtree: Node B (x4 = 0)

At Node B, we fix x4 = 0. The constraint simplifies to:
Xy +2X% +2x3+3-0<4 = Xy 42X + 2x3 < 4.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 30/42

Right Subtree: Node B (x4 = 0)

At Node B, we fix x4 = 0. The constraint simplifies to:
X1 +2X% +2x3+3-0<4 = Xy +2x +2x3 < 4.
The LP relaxation at Node B is:
max 2X; + 2Xo + 5X3
St xi +2x% +2x3 <4, 0<Xq,X,X3<1.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

30/42

Right Subtree: Node B (x4 = 0)
At Node B, we fix x4 = 0. The constraint simplifies to:

Xi+2X% +2X3+3-0<4 = X4 +2Xx +2x3 < 4.
The LP relaxation at Node B is:

max 2X1 + 2X2 + 5X3

s.t. X1+2X2—|—2X3§4, O§X1,X27X3§1.
Xq :1, XQZ%, X3:1, X4:0,
Zp=2-14+2-7+5-1=2+14+5=8.
So UBg = 8. However, our incumbent is already LB = 8. Therefore
UBg =8 < LB =8.
Conclusion: Even though the LP at Node B is fractional, no integer solution in
this subtree can improve the incumbent. We fathom Node B by bound, without

branching further.
Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 30/42

Final Summary of the B&B Tree
We have explored all necessary branches:
@ Left subtree (Node A, x;, = 1):
» Node A1, x3 = 1, x4 = 1: infeasible (fathomed by infeasibility).
» Node A2, x3 = 0, x4 = 1: LP solution is integer solution

(X1, X2, X3,X4) = (1,0,0,1), z=38.

This solution becomes the incumbent: LB = 8. No branching.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

31/42

Final Summary of the B&B Tree
We have explored all necessary branches:
@ Left subtree (Node A, x;, = 1):
» Node A1, x3 = 1, x4 = 1: infeasible (fathomed by infeasibility).
» Node A2, x3 = 0, x4 = 1: LP solution is integer solution
(X1, X2, X3,X4) = (1,0,0,1), z=38.
This solution becomes the incumbent: LB = 8. No branching.
@ Right subtree (Node B, x;, = 0):
» LP solution at Node B: fractional but with UBg = 8 < LB = 8.
» Node B is fathomed by bound without any further branching, even though its
LP solution is not integral.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 31/42

Final Summary of the B&B Tree
We have explored all necessary branches:
@ Left subtree (Node A, x;, = 1):
» Node A1, x3 = 1, x4 = 1: infeasible (fathomed by infeasibility).
» Node A2, x3 = 0, x4 = 1: LP solution is integer solution
(X1, X2, X3,X4) = (1,0,0,1), z=38.
This solution becomes the incumbent: LB = 8. No branching.
@ Right subtree (Node B, x;, = 0):
» LP solution at Node B: fractional but with UBg = 8 < LB = 8.
» Node B is fathomed by bound without any further branching, even though its

LP solution is not integral.
@ Update UB ot = max(UBga, UBg) = max(8,8) = 8 = LB. Terminate!

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 31/42

Final Summary of the B&B Tree
We have explored all necessary branches:
@ Left subtree (Node A, x;, = 1):
» Node A1, x3 = 1, x4 = 1: infeasible (fathomed by infeasibility).
» Node A2, x3 = 0, x4 = 1: LP solution is integer solution
(X1, X2, X3,X4) = (1,0,0,1), z=38.
This solution becomes the incumbent: LB = 8. No branching.
@ Right subtree (Node B, x;, = 0):
» LP solution at Node B: fractional but with UBg = 8 < LB = 8.
» Node B is fathomed by bound without any further branching, even though its
LP solution is not integral.
@ Update UB,ot = max(UBa, UBg) = max(8,8) = 8 = LB. Terminate!
Best integer value found:

zZ*=1B=8, x*=(1,0,0,1).
Root bounds at termination: UB,,ot = 8, LB = 8. Since UB,,,t = LB, the

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 31/42

Evolving Tree (Stage 1)

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 32/42

Evolving Tree (Stage 1)

Both children are fractional.

We next expand Node A.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 32/42

Evolving Tree (Stage 2a)

Expand Node A (fractional in x3):

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 33/42

Evolving Tree (Stage 2a)

Expand Node A (fractional in x3):

Node A1 is infeasible = it contributes no feasible integer solution.

Node A2 has an integer LP solution with value z = 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 33/42

Evolving Tree (Stage 2b)

Using the information from A1 and A2, we update bounds at Node A and the root.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 34/42

Evolving Tree (Stage 2b)

Using the information from A1 and A2, we update bounds at Node A and the root.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 34/42

Evolving Tree (Stage 2b)

Using the information from A1 and A2, we update bounds at Node A and the root.

From A2, we obtain an incumbent with value z = 8 = update global LB = 8.
Node A’s subtree cannot contain any solution better than 8, so UB, = 8.
Node B remains active and will be considered next.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 34/42

Evolving Tree (Stage 2c

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 35/42

Evolving Tree (Stage 2c

Since UBg = 8 < LB = 8, Node B cannot contain any better integer solution.
Node B is fathomed by bound.
Update UB,oot = max(UBa, UBg) = max(8,8) = 8.
All nodes are now resolved, and UB,; = LB = 8, proving optimality of the
incumbent x* = (1,0, 0, 1) with value 8.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 35/42

Bounding and Fathoming Summary

Fathoming rules (for maximization)
A node can be skipped (“fathomed”) if:
@ LP is infeasible (e.g. Node A1), or

@ LP bound < incumbent (not worth exploring) [e.g. Node B] (Fathomed by
bound), or

@ LP solution is integral (update incumbent) [e.g. Node A2].

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 36/42

Bounding and Fathoming Summary

Fathoming rules (for maximization)
A node can be skipped (“fathomed”) if:
@ LP is infeasible (e.g. Node A1), or

@ LP bound < incumbent (not worth exploring) [e.g. Node B] (Fathomed by
bound), or

@ LP solution is integral (update incumbent) [e.g. Node A2].

Each LP bound tightens the global UB.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 36/42

Algorithmic Behavior

@ Each LP call provides a bound.
@ Each integer solution provides an incumbent.
@ We prune aggressively when LP can'’t beat the incumbent.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 37/42

Algorithmic Behavior

@ Each LP call provides a bound.

@ Each integer solution provides an incumbent.

@ We prune aggressively when LP can'’t beat the incumbent.
Visualize B&B as a dialogue:

LP: “At best, | can get 11in this node” LB: “l already have 12!”

The gap tells us how much hope remains.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026

37/42

Node Selection Strategies

The order that we process nodes in B&B matters. We did the order
root - A — A1 — A2 — B. Two classical options:

@ Depth-First Search (DFS): quickly finds feasible integers (good for LB).
@ Best-Bound (Best-First): explores the node with highest current UB bound.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 38/42

Node Selection Strategies

The order that we process nodes in B&B matters. We did the order
root - A — A1 — A2 — B. Two classical options:
@ Depth-First Search (DFS): quickly finds feasible integers (good for LB).
@ Best-Bound (Best-First): explores the node with highest current UB bound.

Modern solvers use hybrids: DFS early — Best-Bound once good incumbent
found.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 38/42

Branching Variable Choice

If there is only one variable that is fractional, just branch on it. But what if there is

more than one?
Which variable to branch on?

@ Most fractional (x; ~ 0.5) — balances search.

@ Greatest effect on objective (pseudo-costs).

@ Domain-specific heuristics (e.g., branching on vertex degree).
Also, which branch to explore first? (i.e. x3 = 0 or x3 = 1 first?).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 39/42

Branching Variable Choice

If there is only one variable that is fractional, just branch on it. But what if there is
more than one?

Which variable to branch on?
@ Most fractional (x; ~ 0.5) — balances search.
@ Greatest effect on objective (pseudo-costs).
@ Domain-specific heuristics (e.g., branching on vertex degree).

Also, which branch to explore first? (i.e. x3 = 0 or x3 = 1 first?).
Smart branching = smaller tree = faster solve. Tons of heuristics.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 39/42

Summary of B&B Workflow

@ Solve LP relaxation.

@ If integral, update incumbent. If fractional — branch.
© Update bounds (both UB and LB of all nodes).

© Prune by infeasibility or domination (fathoming).

© Repeat until UB = LB.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 40/42

Gurobi Example: Integer Knapsack

import gurobipy as gp
from gurobipy import GRB

values = [10, 7, 4]
weights = [5, 4, 3]
W=7

m = gp.Model("knapsack_ip")
x = m.addVars(3, vtype=GRB.BINARY, name="x") #0nly new thing

m.addConstr(sum(weights[i]*x[i] for i in range(3)) <= W)

m.setObjective(sum(values[il*x[i] for i in range(3)), GRB.MAXIMIZE)
m.optimize()

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/03/2026 41/42

Extracting Solver Statistics

After m.optimize():

print("Optimal value:", m.ObjVal)
print("Nodes explored:", m.NodeCount)
print(”"Best bound:"”, m.ObjBound)
print("Gap:", m.MIPGap)
for v in x.values():

print(v.varName, v.X)

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

	Setup and Motivation
	From LPs to Integer Programs
	Example: 0–1 Knapsack
	Before Branch and Bound: The Naïve Approach
	Branch and Bound: The Core Idea

