CS498: Algorithmic Engineering

Lecture 6: Modeling Patterns for Integer Programs

Elfarouk Harb

University of lllinois Urbana-Champaign

Week 03 — 02/05/2026

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 1/34

Outline

0 Formulation Strength

e Setup and Motivation

e Core Binary Modeling Patterns
Q Disjunctions and Big-M

© s0S1 and SOS2

e Summary and Outlook

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

ﬂ Formulation Strength

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

0—1 Knapsack and Its LP Relaxation
General 01 knapsack: max > [, ViX;

n
st. > wx; <C, x€{0,1}foralli.

i=1

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 4/34

0—1 Knapsack and Its LP Relaxation
General 01 knapsack: max > [, ViX;

n
st. > wx; <C, x€{0,1}foralli.
i=1
LP relaxation:
0<x;<1 insteadof x; € {0,1}.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 4/34

0—1 Knapsack and Its LP Relaxation
General 01 knapsack: max > [, ViX;

n
st. > wx; <C, x€{0,1}foralli.
i=1
LP relaxation:
0<x;<1 insteadof x; € {0,1}.

Now the LP is allowed to take fractions of items:

X1 21, X2:0.47 X3:0.6,...

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 4/34

0—1 Knapsack and Its LP Relaxation
General 01 knapsack: max > [, ViX;

n
st. > wx; <C, x€{0,1}foralli.
i=1
LP relaxation:
0<x;<1 insteadof x; € {0,1}.

Now the LP is allowed to take fractions of items:
X1 = 1, X2:0.47 X3:0.6,...
At the root node of B&B:

@ LP value at root becomes the upper bound usfggt.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

4/34

0—1 Knapsack and Its LP Relaxation
General 01 knapsack: max > [, ViX;

n
st. > wx; <C, x€{0,1}foralli.
i=1
LP relaxation:
0<x;<1 insteadof x; € {0,1}.

Now the LP is allowed to take fractions of items:
X1 = 1, X2:0.47 X3:0.6,...

At the root node of B&B:
@ LP value at root becomes the upper bound UBr(ggt.
@ Any integer solution has value < z; .

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

4/34

0—1 Knapsack and Its LP Relaxation
General 01 knapsack: max > [, ViX;

n
st. > wx;<C, x;€{0,1}foralli

i=1

LP relaxation:
0<x;<1 insteadof x; € {0,1}.

Now the LP is allowed to take fractions of items:
X1 :1, X2:0.47 X3:0.6,...
At the root node of B&B:

@ LP value at root becomes the upper bound UBfgc),t.
@ Any integer solution has value < z;p.

Typically: UBr(gc),t > Z,p, S0 the solver must branch to prove there is nothing better

than z; ..

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Week 03 — 02/05/2026

4/34

Strengthening with Cover Inequalities
A cover S C {1,...,n}is any set of items with)", s w; > C.
These items do not all fit in the knapsack.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 5/34

Strengthening with Cover Inequalities

A cover S C {1,...,n}is any set of items with)", s w; > C.

These items do not all fit in the knapsack. We can build stronger and stronger
LP relaxations:

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 5/34

Strengthening with Cover Inequalities
A cover S C {1,...,n}is any set of items with)", s w; > C.
These items do not all fit in the knapsack. We can build stronger and stronger
LP relaxations:
@ Model M, (weak): only the knapsack constraint, >-7 , w;x; < C.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 5/34

Strengthening with Cover Inequalities
A cover S C {1,...,n}is any set of items with >, s w; > C.
These items do not all fit in the knapsack. We can build stronger and stronger
LP relaxations:
@ Model M, (weak): only the knapsack constraint, >-7 , w;x; < C.
@ Model M, (pairs): M, + all 2-item covers

xi+x; <1 forevery pair {i,j} with w; + w; > C.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 5/34

Strengthening with Cover Inequalities
A cover S C {1,...,n}is any set of items with >, s w; > C.
These items do not all fit in the knapsack. We can build stronger and stronger
LP relaxations:
@ Model M, (weak): only the knapsack constraint, >-7 , w;x; < C.
@ Model M, (pairs): M, + all 2-item covers

xi+x; <1 forevery pair {i,j} with w; + w; > C.

@ Model M, (triples): M, + all 3-item covers

Xi+ X; + xx <2 for every triple with w; + w; + w > C.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 5/34

Strengthening with Cover Inequalities
A cover S C {1,...,n}is any set of items with >, s w; > C.
These items do not all fit in the knapsack. We can build stronger and stronger
LP relaxations:
@ Model M, (weak): only the knapsack constraint, >-7 , w;x; < C.
@ Model M, (pairs): M, + all 2-item covers

xi+x; <1 forevery pair {i,j} with w; + w; > C.

@ Model M, (triples): M, + all 3-item covers

Xi+ X; + xx <2 for every triple with w; + w; + w > C.

@ ...and so on, adding covers of size 4,5, ... k.
Each step: same integer problem, but LP relaxation gets tighter.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 5/34

How the Number of Inequalities Blows Up
For each cover S we add
> x<[S|-1.

i€S

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

How the Number of Inequalities Blows Up
For each cover S we add
> x<[S|-1.

i€S

Counting them:
@ All 2-item covers: up to (3) = O(n?) inequalities.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Week 03 — 02/05/2026

6/34

How the Number of Inequalities Blows Up
For each cover S we add
> x<[S|-1.

ieS
Counting them:

@ All 2-item covers: up to (3) = O(n?) inequalities.
@ All 3-item covers: up to (3) = O(n®) inequalities.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

6/34

How the Number of Inequalities Blows Up
For each cover S we add
> x<[S|-1.

ieS
Counting them:
@ All 2-item covers: up to (3) = O(n?) inequalities.
@ All 3-item covers: up to (3) = O(n®) inequalities.
@ All covers with |S| < k: up to O(n*) inequalities.
@ All covers of any size: potentially exponentially many.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

6/34

How the Number of Inequalities Blows Up
For each cover S we add
> x<[S|-1.

ieS
Counting them:
@ All 2-item covers: up to (3) = O(n?) inequalities.
@ All 3-item covers: up to (3) = O(n®) inequalities.
@ All covers with |S| < k: up to O(n*) inequalities.
@ All covers of any size: potentially exponentially many.
As we move from M, to M; to Mxto .. .:

Zipmy) = Zipmy) = ey = - 2 ZLp-

LP bounds get closer to the true integer optimum,

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

6/34

How the Number of Inequalities Blows Up
For each cover S we add
> x<[S|-1.

ieS
Counting them:
@ All 2-item covers: up to (3) = O(n?) inequalities.
@ All 3-item covers: up to (3) = O(n®) inequalities.
@ All covers with |S| < k: up to O(n*) inequalities.
@ All covers of any size: potentially exponentially many.
As we move from M, to M; to Mxto .. .:

Zipmy) = Zip(my) = 2Py = - = ALp-

LP bounds get closer to the true integer optimum,

But the LP itself gets larger and more expensive to solve (more rows, denser
constraint matrix).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 6/34

Effect on B&B: Weak LP (M,

s -

Behavior:
@ Root UB far above the best integer value.
@ LP relaxation gives weak guidance.
@ Solver must explore many nodes before pruning.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 7/34

Effect on B&B: Adding Pair Covers (M)

i

Behavior:
@ Pair-cover inequalities tighten the relaxation.
@ Root UB moves closer to the true integer optimum.
@ Some nodes are pruned much earlier than in M.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

8/34

Effect on B&B: Adding Higher-Order Covers (Ms)

.
e et

Behavior:
@ Root LP bound is very close to, or equal to, z; p.
@ The B&B tree essentially collapses to the root.

@ But the LP now has O(n¥) extra inequalities. Solving the LP takes as much
as brute forcing!

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

9/34

Formulation Strength vs Search Effort

@ Starting from the basic knapsack LP (M,), bounds are loose, and the solver
has to explore many nodes.

@ Adding all pair covers (M;) and then all triples, etc. (M.) makes the LP
bounds tighter and the B&B tree smaller.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 10/34

Formulation Strength vs Search Effort
@ Starting from the basic knapsack LP (M), bounds are loose, and the solver
has to explore many nodes.

@ Adding all pair covers (M;) and then all triples, etc. (M.) makes the LP
bounds tighter and the B&B tree smaller.

But:
@ The number of cover inequalities grows as O(n?), O(n®), ..., O(n¥).
@ Solving the LP at each node becomes more and more expensive.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 10/34

Formulation Strength vs Search Effort
@ Starting from the basic knapsack LP (M), bounds are loose, and the solver
has to explore many nodes.

@ Adding all pair covers (M;) and then all triples, etc. (M.) makes the LP
bounds tighter and the B&B tree smaller.

But:

@ The number of cover inequalities grows as O(n?), O(n®), ..., O(n¥).

@ Solving the LP at each node becomes more and more expensive.
Big picture:

Stronger LP = fewer nodes but bigger LPs.

Good models strike a balance:

@ LP strong enough to give meaningful bounds,

@ but not so huge that the LP solve itself dominates the running time.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 10/34

e Setup and Motivation

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Why Modeling Patterns Matter

@ In practice, the hard part is rarely “solving” the IP.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 12/34

Why Modeling Patterns Matter

@ In practice, the hard part is rarely “solving” the IP.
@ The hard part is formulating the problem so that:

» it captures the real-world constraints, and
» it is solver-friendly (strong LP relaxation).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 12/34

Why Modeling Patterns Matter

@ In practice, the hard part is rarely “solving” the IP.
@ The hard part is formulating the problem so that:
» it captures the real-world constraints, and
» it is solver-friendly (strong LP relaxation).
@ Instead of reinventing the wheel every time, we reuse patterns:
» selection / knapsack,
» fixed-charge on/off,
» logical implications,
» cardinality and “at most k”,
» either—or and disjunctions,
» SOS1/SOS2 for piecewise-linear functions.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

12/34

Why Modeling Patterns Matter

@ In practice, the hard part is rarely “solving” the IP.
@ The hard part is formulating the problem so that:
» it captures the real-world constraints, and
» it is solver-friendly (strong LP relaxation).
@ Instead of reinventing the wheel every time, we reuse patterns:
» selection / knapsack,
» fixed-charge on/off,
» logical implications,
» cardinality and “at most k”,
» either—or and disjunctions,
» SOS1/SOS2 for piecewise-linear functions.

Today’s lecture = “design patterns” for integer programming.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

12/34

Q Core Binary Modeling Patterns

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Pattern 1: Subset Selection / 0—1 Knapsack

Basic 0—1 knapsack:

n n
maxz viX; S.t. Z wix; < C, X € {O, 1 }
i=1 i=1

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 14/34

Pattern 1: Subset Selection / 0—1 Knapsack

Basic 0—1 knapsack:
n n
maxz viX; S.t. Z wix; < C, X € {0, 1 }
i=1 i=1
Interpretation:

@ x; = 1 = choose item |.
@ x; = 0 = do not choose item .

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 14/34

Pattern 1: Subset Selection / 0—1 Knapsack

Basic 0—1 knapsack:
n n
maxz viX; S.t. Z wix; < C, X € {0, 1 }
i=1 i=1
Interpretation:
@ x; =1 = choose item i.

@ x; = 0 = do not choose item 1.
Pattern name: binary subset selection.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 14/34

Pattern 2: Fixed-Charge / On—Off Decisions

Many problems have a fixed cost to “turn something on” before you use it:
@ Opening a facility.
@ Starting up a machine for the day.
@ Using a particular shipping route (e.g. Suez Canal registration fees).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 15/34

Pattern 2: Fixed-Charge / On—Off Decisions

Many problems have a fixed cost to “turn something on” before you use it:
@ Opening a facility.
@ Starting up a machine for the day.
@ Using a particular shipping route (e.g. Suez Canal registration fees).
Variables:
@ y € {0,1}: on/off decision.
@ g > 0: flow / production / quantity.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 15/34

Pattern 2: Fixed-Charge / On—Off Decisions

Many problems have a fixed cost to “turn something on” before you use it:
@ Opening a facility.
@ Starting up a machine for the day.
@ Using a particular shipping route (e.g. Suez Canal registration fees).
Variables:
@ y € {0,1}: on/off decision.
@ g > 0: flow / production / quantity.
Model: 0 < g < Qn..yand y € {0,1}.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 15/34

Pattern 2: Fixed-Charge / On—Off Decisions

Many problems have a fixed cost to “turn something on” before you use it:
@ Opening a facility.
@ Starting up a machine for the day.
@ Using a particular shipping route (e.g. Suez Canal registration fees).
Variables:
@ y € {0,1}: on/off decision.
@ g > 0: flow / production / quantity.

Model: 0 < g < Qn..yand y € {0,1}.
fy=0=q9g=0
|fy:1 :>O§q§0max

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 15/34

Fixed-Charge Example: Mini Factory Startup

Simple factory:
@ Revenue: $6 per unit produced.
@ Fixed startup cost: $200 if we open.
@ Capacity: at most 50 units.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 16/34

Fixed-Charge Example: Mini Factory Startup

Simple factory:
@ Revenue: $6 per unit produced.
@ Fixed startup cost: $200 if we open.
@ Capacity: at most 50 units.
max 6q — 200y
s.t. 0 < g <50y,

y €{0,1}.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

16/34

Fixed-Charge Example: Mini Factory Startup

Simple factory:
@ Revenue: $6 per unit produced.
@ Fixed startup cost: $200 if we open.
@ Capacity: at most 50 units.
max 6q — 200y
s.t. 0 < g <50y,
y €{0,1}.
Observations:
@ If y =0: we get g =0, profit = 0.
@ If y =1: we choose g = 50.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

16/34

Fixed-Charge Example: Mini Factory Startup

Simple factory:
@ Revenue: $6 per unit produced.
@ Fixed startup cost: $200 if we open.
@ Capacity: at most 50 units.
max 6q — 200y
s.t. 0 < g <50y,
y €{0,1}.
Observations:
@ If y=0: weget g=0, profit = 0.
@ If y =1: we choose g = 50.
Pattern name: fixed-charge on/off.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

16/34

Pattern 3: Logical Implications (If A then B)

Suppose we have 2 options:
A Be {0,1}.

Requirements:
@ If Ais chosen, B must be chosen.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 17/34

Pattern 3: Logical Implications (If A then B)

Suppose we have 2 options:
A Be {0,1}.
Requirements:
@ If Ais chosen, B must be chosen.
Encoding:

A<B.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 17/34

Pattern 3: Logical Implications (If A then B)

Suppose we have 2 options:
A Be {0,1}.
Requirements:
@ If Ais chosen, B must be chosen.
Encoding:

A<B.

@ lfA=1then B=1.
@ fA=0then Be {0,1}.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 17/34

Pattern 3: Logical Implications (If A then B)

Suppose we have 2 options:
A Be {0,1}.
Requirements:

@ If Ais chosen, B must be chosen.
Encoding:

A<B.

@ lfA=1then B=1.
@ fA=0then Be {0,1}.

Pattern name: binary implication / precedence constraints.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 17/34

Pattern 3 in Gurobi: Logical Implication with >>

Goal: If A= 1, then enforce constraint a2’ x < b.
import gurobipy as gp

from gurobipy import GRB

m = gp.Model("implication_demo")

Binary "trigger"” variable A
A = m.addVar(vtype=GRB.BINARY, name="A")

Some continuous variables x
x1 m.addVar(1b=0.0, name="x1")
x2 = m.addVar(1b=0.0, name="x2")

If A ==1, then x1 + 2*xx2 <= 5

m.addConstr((A == 1) >> (x1 + 2%*x2 <= 5), name="A_implies_constr”) #0nly new thing here.
m.setObjective(x1 + x2 - 10xA, GRB.MINIMIZE)

m.optimize()

Notes: The constraint only activates when A = 1.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

18/34

Q Disjunctions and Big-M

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Pattern 4: Either—Or Constraints

Many decisions are mutually exclusive:
@ Route A or Route B (but not both).
@ Use technology 1 or technology 2.
@ Choose one of several pricing schemes.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 20/34

Pattern 4: Either—Or Constraints

Many decisions are mutually exclusive:

@ Route A or Route B (but not both).

@ Use technology 1 or technology 2.

@ Choose one of several pricing schemes.
Basic idea: introduce binaries z4, zg:

Zr+zg=1, ZA,ZBE{O,1}.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Week 03 — 02/05/2026

20/34

Pattern 4: Either—Or Constraints

Many decisions are mutually exclusive:

@ Route A or Route B (but not both).

@ Use technology 1 or technology 2.

@ Choose one of several pricing schemes.
Basic idea: introduce binaries z4, zg:

Zr+zg=1, ZA,ZBE{O,1}.

Then “gate” each option:
@ If Route A: constraints for Route A active when z4 = 1.
@ If Route B: constraints for Route B active when zg = 1.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 20/34

Either—Or Example: Two Shipping Routes
Demand: D units, must ship all of it. Two routes:

@ Route 1: cost ¢; per unit, capacity U;.

@ Route 2: cost ¢, per unit, capacity Us.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

21/34

Either—Or Example: Two Shipping Routes
Demand: D units, must ship all of it. Two routes:

@ Route 1: cost ¢; per unit, capacity U;.

@ Route 2: cost ¢, per unit, capacity Us.

Variables:
fi, >0, Z1,Zg€{0,1}.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

21/34

Either—Or Example: Two Shipping Routes
Demand: D units, must ship all of it. Two routes:
@ Route 1: cost ¢; per unit, capacity U;.
@ Route 2: cost ¢, per unit, capacity Us.
Variables:
fi,k >0, 21,2 €{0,1}.
Constraints:

fi4f=D,
fi <Uz, (< Uz,
Zi+2=1.

Objective:
min Cifi + Cobs.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

21/34

Either—Or Example: Two Shipping Routes
Demand: D units, must ship all of it. Two routes:
@ Route 1: cost ¢; per unit, capacity U;.
@ Route 2: cost ¢, per unit, capacity Us.
Variables:
fi,k >0, 21,2 €{0,1}.
Constraints:

fi+ =D,
fi <Uzy, b < Uz,
Z1 —|-22:1.

Objective:
min Cifi + Cobs.

Pattern name: either—or / disjunctive constraints.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

21/34

Pattern 5: Big-M

We often need a binary variable z to indicate if a linear inequality is satisfied.

z=1= a'x<b

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 22/34

Pattern 5: Big-M

We often need a binary variable z to indicate if a linear inequality is satisfied.

z=1= a'x<b

Using Big-M, we can encode this logic linearly:

ax<b+M1-z) ze{0,1}

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

22/34

Pattern 5: Big-M

We often need a binary variable z to indicate if a linear inequality is satisfied.

z=1= a'x<b
Using Big-M, we can encode this logic linearly:

ax<b+M1-z) ze{0,1}

@ If z = 1: constraint is enforced = a’'x < b.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 22/34

Pattern 5: Big-M

We often need a binary variable z to indicate if a linear inequality is satisfied.

z=1= a'x<b

Using Big-M, we can encode this logic linearly:

ax<b+M1-z) zec{0,1}

@ If z=1: constraint is enforced = a’'x < b.
@ If z = 0: constraint relaxed = a'x < b+ M (always true if M large enough).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 22/34

Pattern 5: Big-M

We often need a binary variable z to indicate if a linear inequality is satisfied.

z=1= a'x<b
Using Big-M, we can encode this logic linearly:

ax<b+M1-z) zec{0,1}

@ If z = 1: constraint is enforced = a’'x < b.

@ If z = 0: constraint relaxed = a'x < b+ M (always true if M large enough).

Question: How do we choose M?

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

22/34

Tiny Big-M Demo: Tight vs Loose M

Consider relaxation (i.e. 0 < y < 1) of:
minyst x>1, x < My, y € {0,1}.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 23/34

Tiny Big-M Demo: Tight vs Loose M

Consider relaxation (i.e. 0 < y < 1) of:
minyst x>1, x < My, y € {0,1}.

Case 1: Tight M =1.
@ Constraints: x > 1, x<y=y>1.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 23/34

Tiny Big-M Demo: Tight vs Loose M

Consider relaxation (i.e. 0 < y < 1) of:
minys.t x>1, x < My, y € {0,1}.

Case 1: Tight M =1.
@ Constraints: x > 1, x<y=y>1.
@ Feasible LP region: only x =1,y = 1.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 23/34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 < y < 1) of:
minys.t x>1, x < My, y € {0,1}.

Case 1: Tight M =1.
@ Constraints: x > 1, x<y=y>1.
@ Feasible LP region: only x =1, y = 1.
@ LP relaxation = integer solution — strong LP.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

23/34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 < y < 1) of:
minys.t x>1, x < My, y € {0,1}.

Case 1: Tight M =1.
@ Constraints: x > 1, x<y=y>1.
@ Feasible LP region: only x =1, y = 1.
@ LP relaxation = integer solution — strong LP.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

23/34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 < y < 1) of:
minyst x>1, x < My, y € {0,1}.

Case 1: Tight M =1.

@ Constraints: x > 1, x<y=y>1.

@ Feasible LP region: only x =1,y = 1.

@ LP relaxation = integer solution — strong LP.
Case 2: Loose M = 1000.

@ Constraints: x > 1, x < 1000y.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

23/34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 < y < 1) of:
minyst x>1, x < My, y € {0,1}.

Case 1: Tight M =1.

@ Constraints: x > 1, x<y=y>1.

@ Feasible LP region: only x =1,y = 1.

@ LP relaxation = integer solution — strong LP.
Case 2: Loose M = 1000.

@ Constraints: x > 1, x < 1000y.

@ LP can pick y =0.001, x = 1.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

23/34

Tiny Big-M Demo: Tight vs Loose M

Consider relaxation (i.e. 0 < y < 1) of:
minyst x>1, x < My, y € {0,1}.

Case 1: Tight M =1.

@ Constraints: x > 1, x<y=y>1.

@ Feasible LP region: only x =1,y = 1.

@ LP relaxation = integer solution — strong LP.
Case 2: Loose M = 1000.

@ Constraints: x > 1, x < 1000y.

@ LP can pick y =0.001, x = 1.

@ Objective y becomes tiny — large integrality gap.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

23/34

Tiny Big-M Demo: Tight vs Loose M

Consider relaxation (i.e. 0 < y < 1) of:
minyst x>1, x < My, y € {0,1}.

Case 1: Tight M =1.

@ Constraints: x > 1, x<y=y>1.

@ Feasible LP region: only x =1,y = 1.

@ LP relaxation = integer solution — strong LP.
Case 2: Loose M = 1000.

@ Constraints: x > 1, x < 1000y.

@ LP can pick y =0.001, x = 1.

@ Objective y becomes tiny — large integrality gap.

@ Branch-and-bound must search many nodes.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

23/34

Tiny Big-M Demo: Tight vs Loose M

Consider relaxation (i.e. 0 < y < 1) of:
minyst x>1, x < My, y € {0,1}.

Case 1: Tight M =1.
@ Constraints: x > 1, x<y=y>1.
@ Feasible LP region: only x =1,y = 1.
@ LP relaxation = integer solution — strong LP.
Case 2: Loose M = 1000.
@ Constraints: x > 1, x < 1000y.
@ LP can pick y =0.001, x = 1.
@ Objective y becomes tiny — large integrality gap.
@ Branch-and-bound must search many nodes.
Takeaway:
@ M must be just large enough to model the logic correctly.
@ Too-large M weakens the LP relaxation and slows the solver.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

23/34

© s0S1 and SOS2

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Special Ordered Sets: SOS1 and SOS2

Solvers support Special Ordered Sets patterns:
SOS1: At most one variable in the set can be non-zero.
SOS2: At most two adjacent variables (in a specified order) can be non-zero.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 25/34

Special Ordered Sets: SOS1 and SOS2

Solvers support Special Ordered Sets patterns:
SOS1: At most one variable in the set can be non-zero.

SOS2: At most two adjacent variables (in a specified order) can be non-zero.
Usage:

@ SOS1: choose exactly one option / segment / pattern.
@ SOS2: piecewise-linear functions with convex hull interpolation.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 25/34

Special Ordered Sets: SOS1 and SOS2

Solvers support Special Ordered Sets patterns:
SOS1: At most one variable in the set can be non-zero.

SOS2: At most two adjacent variables (in a specified order) can be non-zero.
Usage:

@ SOS1: choose exactly one option / segment / pattern.

@ SOS2: piecewise-linear functions with convex hull interpolation.
Benefit:

@ Solver can internally use clever heuristics designed for either SOS1/SOS2.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 25/34

Gurobi: Using SOS1 for Choice Modeling

Example: choose exactly one option

import gurobipy as gp
from gurobipy import GRB

m

= gp.Model("inventory_complementarity”)

demand = 50

#

Continuous decision variables

produced = m.addVar(1b=0, ub=supply, name="produced”)
leftover = m.addVar(lb=0, name="leftover_stock”)
backorder = m.addVar(lb=0, name="unmet_demand")

produced - leftover + backorder = demand
m.addConstr(produced - leftover + backorder == demand)

Complementarity: cannot have leftover AND backorder
m.addSOS(GRB.SOS_TYPE1, [leftover, backorder]) #New

Penalties

m.setObjective(1*leftover + 100*backorder, GRB.MINIMIZE)
m.optimize()

Interpretation:

@ SOS1 enforces mutual exclusivity. Exactly one of leftover or demand is

non-zero.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Week 03 — 02/05/2026

26/34

Motivating SOS2: What Is a Piecewise-Linear Function?
A piecewise-linear (PWL) function is made of straight segments between known
breakpoints:

(X0, Co), (X1, 1), ..., (Xk, Ck).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 27/34

Motivating SOS2: What Is a Piecewise-Linear Function?
A piecewise-linear (PWL) function is made of straight segments between known
breakpoints:

(X0, C0), (X1, €1), ..., (Xk, Ck).
Example:

k|0 1 2 3
X |0 50 100 200
|0 40 150 320

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Week 03 — 02/05/2026 27/34

Motivating SOS2: What Is a Piecewise-Linear Function?
A piecewise-linear (PWL) function is made of straight segments between known
breakpoints:

(X0, C0), (X1, €1), ..., (Xk, Ck).
Example:

k|0 1 2 3
X |0 50 100 200
|0 40 150 320

c(x)

3200

150

40
0

> X
0 50 100 200

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering

Week 03 — 02/05/2026 27/34

Representing a Point on the Curve
We want to represent an arbitrary point (x, ¢) on this broken line.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 28/34

Representing a Point on the Curve
We want to represent an arbitrary point (x, ¢) on this broken line.
Idea: write it as a convex combination of the breakpoints.

K K

(X,C):ZAk(Xk,Ck), Z)\k:1,)\k20

k=0 k=0

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

28/34

Representing a Point on the Curve

We want to represent an arbitrary point (x, ¢) on this broken line.
ldea: write it as a convex combination of the breakpoints.

K K

(X, C) = Z)\k(Xk, Ck), Z)\k =1, M2>0.

k=0 k=0

Example: Suppose the true point is halfway between (x1, ¢1) = (50, 40) and
(X2, c2) = (100, 150).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

28/34

Representing a Point on the Curve
We want to represent an arbitrary point (x, ¢) on this broken line.
ldea: write it as a convex combination of the breakpoints.

K K

(X, C) = Z)\k(Xk, Ck), Z)\k =1, M2>0.

k=0 k=0

Example: Suppose the true point is halfway between (x1, ¢1) = (50, 40) and
(X2, c2) = (100, 150).

A =05, X =05 others =0.
Then

X =50(0.5) + 100(0.5) =75, ¢ = 40(0.5) + 150(0.5) = 95.

(x,c) = (75,95) lies exactly on the line segment between breakpoints 1 and 2.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026

28/34

Why We Need an Additional Rule

The convex combination equations alone allow mixtures of non-adjacent
breakpoints:
X =03, \3=0.7 = x =140, c = 224.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 29/34

Why We Need an Additional Rule

The convex combination equations alone allow mixtures of non-adjacent

breakpoints:

M =03, \3=0.7 = x =140, c =224.
But that point is not on the curve—it “cuts across” segments.

c(x)

A

P

Invalid blend: -
Ao, A3 >0 ,//

> X

We must ensure that at most two adjacent)\, are positive.

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering Week 03 — 02/05/2026

29/34

Special Ordered Sets Type 2 (SOS2)

The adjacency rule is enforced by declaring the (), ..., Ax) as an SOS2 set
ordered by x.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 30/34

Special Ordered Sets Type 2 (SOS2)

The adjacency rule is enforced by declaring the (), ..., Ax) as an SOS2 set
ordered by x.
S0OS2 definition:

@ At most two)\ can be nonzero, and adjacent in the order of x.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 30/34

Special Ordered Sets Type 2 (SOS2)

The adjacency rule is enforced by declaring the (), ..., Ax) as an SOS2 set
ordered by x.
S0OS2 definition:
@ At most two)\ can be nonzero, and adjacent in the order of x.
c(x)

A

SOS2 enforces: Ay, A2 > 0 only

X0 X1 X2 X3

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 30/34

Gurobi: Declaring an SOS2 Set

Example code for a piecewise-linear cost:
import gurobipy as gp
from gurobipy import GRB

xs = [0, 50, 100, 200]
cs = [0, 40, 150, 320] # cost at breakpoints

m = gp.Model("piecewise_cost")

lam = m.addVars(len(xs), 1b=0.0, name="1lam")
x = m.addVar(lb=0.0, name="x")
c = m.addVar(1lb=0.0, name="cost")

Convex combination for x
m.addConstr(gp.quicksum(lam[k] for k in range(len(xs))) == 1)
m.addConstr(x == gp.quicksum(xs[k] * lam[k] for k in range(len(xs))))

S0S2 declaration: at most two adjacent lambdas > @
m.addSOS(GRB.SOS_TYPE2, [lam[k] for k in range(len(xs))], xs) #New!!

Final convex combination for cost
m.addConstr(c == gp.quicksum(cs[k] * lam[k] for k in range(len(xs))))

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 31/34

Homework: Building SOS1 and SOS2 from Scratch

In this week’s HW, you’ll implement the same ideas manually using big-M and
binary variables. For SOS2:

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 32/34

Homework: Building SOS1 and SOS2 from Scratch

In this week’s HW, you’ll implement the same ideas manually using big-M and

binary variables. For SOS2:
Step 1: Start from the breakpoints

(xx, ck) = (0,0), (50,40), (100, 150), (200, 320)

and define binary variables z, € {0, 1} that pick which segment is active.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 32/34

Homework: Building SOS1 and SOS2 from Scratch

In this week’s HW, you’ll implement the same ideas manually using big-M and
binary variables. For SOS2:
Step 1: Start from the breakpoints

(xx, ck) = (0,0), (50,40), (100, 150), (200, 320)

and define binary variables z, € {0, 1} that pick which segment is active.
Step 2: Use Big-M or indicator constraints to:

@ enforce that exactly one segment is active,
@ interpolate x and c correctly within that segment.

Goal: understand how SOS1/SOS2 encapsulates the same logic you'd otherwise
build with Big-M + binaries.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 32/34

@ Summary and Outlook

Elfarouk Harb (UIUC)

CS498: Algorithmic Engineering

Summary of Lecture 6

@ We saw core binary modeling patterns:
» selection / knapsack,
» fixed-charge on/off and linking constraints,
» logical implications and precedence,
» either—or disjunctions via binaries.
@ We discussed Big-M:
» too-large M = weak LP, big B&B tree,
» use data/context to tighten M and strengthen the formulation.
@ We introduced SOS1/S0OS2:
» solver-native constructs for at-most-one and piecewise-linear modeling,
» avoid manual Big-M and get stronger relaxations.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 — 02/05/2026 34/34

	Formulation Strength
	Setup and Motivation
	Core Binary Modeling Patterns
	Disjunctions and Big-M
	SOS1 and SOS2
	Summary and Outlook

