
CS498: Algorithmic Engineering
Lecture 6: Modeling Patterns for Integer Programs

Elfarouk Harb

University of Illinois Urbana-Champaign

Week 03 – 02/05/2026

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 1 / 34

Outline

1 Formulation Strength

2 Setup and Motivation

3 Core Binary Modeling Patterns

4 Disjunctions and Big-M

5 SOS1 and SOS2

6 Summary and Outlook

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 2 / 34

1 Formulation Strength

2 Setup and Motivation

3 Core Binary Modeling Patterns

4 Disjunctions and Big-M

5 SOS1 and SOS2

6 Summary and Outlook

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 3 / 34

0–1 Knapsack and Its LP Relaxation
General 0–1 knapsack: max

∑n
i=1 vixi

s.t.
n∑

i=1

wixi ≤ C, xi ∈ {0,1} for all i .

LP relaxation:
0 ≤ xi ≤ 1 instead of xi ∈ {0,1}.

Now the LP is allowed to take fractions of items:

x1 = 1, x2 = 0.4, x3 = 0.6, . . .

At the root node of B&B:
LP value at root becomes the upper bound UB(0)

root.
Any integer solution has value ≤ z∗

ILP.
Typically: UB(0)

root > z∗
ILP, so the solver must branch to prove there is nothing better

than z∗
ILP.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 4 / 34

0–1 Knapsack and Its LP Relaxation
General 0–1 knapsack: max

∑n
i=1 vixi

s.t.
n∑

i=1

wixi ≤ C, xi ∈ {0,1} for all i .

LP relaxation:
0 ≤ xi ≤ 1 instead of xi ∈ {0,1}.

Now the LP is allowed to take fractions of items:

x1 = 1, x2 = 0.4, x3 = 0.6, . . .

At the root node of B&B:
LP value at root becomes the upper bound UB(0)

root.
Any integer solution has value ≤ z∗

ILP.
Typically: UB(0)

root > z∗
ILP, so the solver must branch to prove there is nothing better

than z∗
ILP.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 4 / 34

0–1 Knapsack and Its LP Relaxation
General 0–1 knapsack: max

∑n
i=1 vixi

s.t.
n∑

i=1

wixi ≤ C, xi ∈ {0,1} for all i .

LP relaxation:
0 ≤ xi ≤ 1 instead of xi ∈ {0,1}.

Now the LP is allowed to take fractions of items:

x1 = 1, x2 = 0.4, x3 = 0.6, . . .

At the root node of B&B:
LP value at root becomes the upper bound UB(0)

root.
Any integer solution has value ≤ z∗

ILP.
Typically: UB(0)

root > z∗
ILP, so the solver must branch to prove there is nothing better

than z∗
ILP.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 4 / 34

0–1 Knapsack and Its LP Relaxation
General 0–1 knapsack: max

∑n
i=1 vixi

s.t.
n∑

i=1

wixi ≤ C, xi ∈ {0,1} for all i .

LP relaxation:
0 ≤ xi ≤ 1 instead of xi ∈ {0,1}.

Now the LP is allowed to take fractions of items:

x1 = 1, x2 = 0.4, x3 = 0.6, . . .

At the root node of B&B:
LP value at root becomes the upper bound UB(0)

root.

Any integer solution has value ≤ z∗
ILP.

Typically: UB(0)
root > z∗

ILP, so the solver must branch to prove there is nothing better
than z∗

ILP.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 4 / 34

0–1 Knapsack and Its LP Relaxation
General 0–1 knapsack: max

∑n
i=1 vixi

s.t.
n∑

i=1

wixi ≤ C, xi ∈ {0,1} for all i .

LP relaxation:
0 ≤ xi ≤ 1 instead of xi ∈ {0,1}.

Now the LP is allowed to take fractions of items:

x1 = 1, x2 = 0.4, x3 = 0.6, . . .

At the root node of B&B:
LP value at root becomes the upper bound UB(0)

root.
Any integer solution has value ≤ z∗

ILP.

Typically: UB(0)
root > z∗

ILP, so the solver must branch to prove there is nothing better
than z∗

ILP.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 4 / 34

0–1 Knapsack and Its LP Relaxation
General 0–1 knapsack: max

∑n
i=1 vixi

s.t.
n∑

i=1

wixi ≤ C, xi ∈ {0,1} for all i .

LP relaxation:
0 ≤ xi ≤ 1 instead of xi ∈ {0,1}.

Now the LP is allowed to take fractions of items:

x1 = 1, x2 = 0.4, x3 = 0.6, . . .

At the root node of B&B:
LP value at root becomes the upper bound UB(0)

root.
Any integer solution has value ≤ z∗

ILP.
Typically: UB(0)

root > z∗
ILP, so the solver must branch to prove there is nothing better

than z∗
ILP.
Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 4 / 34

Strengthening with Cover Inequalities
A cover S ⊆ {1, . . . ,n} is any set of items with

∑
i∈S wi > C.

These items do not all fit in the knapsack.

We can build stronger and stronger
LP relaxations:

Model M0 (weak): only the knapsack constraint,
∑n

i=1 wixi ≤ C.
Model M1 (pairs): M0 + all 2-item covers

xi + xj ≤ 1 for every pair {i , j} with wi + wj > C.

Model M2 (triples): M1 + all 3-item covers

xi + xj + xk ≤ 2 for every triple with wi + wj + wk > C.

. . . and so on, adding covers of size 4,5, . . . , k .
Each step: same integer problem, but LP relaxation gets tighter.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 5 / 34

Strengthening with Cover Inequalities
A cover S ⊆ {1, . . . ,n} is any set of items with

∑
i∈S wi > C.

These items do not all fit in the knapsack. We can build stronger and stronger
LP relaxations:

Model M0 (weak): only the knapsack constraint,
∑n

i=1 wixi ≤ C.
Model M1 (pairs): M0 + all 2-item covers

xi + xj ≤ 1 for every pair {i , j} with wi + wj > C.

Model M2 (triples): M1 + all 3-item covers

xi + xj + xk ≤ 2 for every triple with wi + wj + wk > C.

. . . and so on, adding covers of size 4,5, . . . , k .
Each step: same integer problem, but LP relaxation gets tighter.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 5 / 34

Strengthening with Cover Inequalities
A cover S ⊆ {1, . . . ,n} is any set of items with

∑
i∈S wi > C.

These items do not all fit in the knapsack. We can build stronger and stronger
LP relaxations:

Model M0 (weak): only the knapsack constraint,
∑n

i=1 wixi ≤ C.

Model M1 (pairs): M0 + all 2-item covers

xi + xj ≤ 1 for every pair {i , j} with wi + wj > C.

Model M2 (triples): M1 + all 3-item covers

xi + xj + xk ≤ 2 for every triple with wi + wj + wk > C.

. . . and so on, adding covers of size 4,5, . . . , k .
Each step: same integer problem, but LP relaxation gets tighter.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 5 / 34

Strengthening with Cover Inequalities
A cover S ⊆ {1, . . . ,n} is any set of items with

∑
i∈S wi > C.

These items do not all fit in the knapsack. We can build stronger and stronger
LP relaxations:

Model M0 (weak): only the knapsack constraint,
∑n

i=1 wixi ≤ C.
Model M1 (pairs): M0 + all 2-item covers

xi + xj ≤ 1 for every pair {i , j} with wi + wj > C.

Model M2 (triples): M1 + all 3-item covers

xi + xj + xk ≤ 2 for every triple with wi + wj + wk > C.

. . . and so on, adding covers of size 4,5, . . . , k .
Each step: same integer problem, but LP relaxation gets tighter.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 5 / 34

Strengthening with Cover Inequalities
A cover S ⊆ {1, . . . ,n} is any set of items with

∑
i∈S wi > C.

These items do not all fit in the knapsack. We can build stronger and stronger
LP relaxations:

Model M0 (weak): only the knapsack constraint,
∑n

i=1 wixi ≤ C.
Model M1 (pairs): M0 + all 2-item covers

xi + xj ≤ 1 for every pair {i , j} with wi + wj > C.

Model M2 (triples): M1 + all 3-item covers

xi + xj + xk ≤ 2 for every triple with wi + wj + wk > C.

. . . and so on, adding covers of size 4,5, . . . , k .
Each step: same integer problem, but LP relaxation gets tighter.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 5 / 34

Strengthening with Cover Inequalities
A cover S ⊆ {1, . . . ,n} is any set of items with

∑
i∈S wi > C.

These items do not all fit in the knapsack. We can build stronger and stronger
LP relaxations:

Model M0 (weak): only the knapsack constraint,
∑n

i=1 wixi ≤ C.
Model M1 (pairs): M0 + all 2-item covers

xi + xj ≤ 1 for every pair {i , j} with wi + wj > C.

Model M2 (triples): M1 + all 3-item covers

xi + xj + xk ≤ 2 for every triple with wi + wj + wk > C.

. . . and so on, adding covers of size 4,5, . . . , k .
Each step: same integer problem, but LP relaxation gets tighter.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 5 / 34

How the Number of Inequalities Blows Up
For each cover S we add ∑

i∈S

xi ≤ |S| − 1.

Counting them:
All 2-item covers: up to

(n
2

)
= O(n2) inequalities.

All 3-item covers: up to
(n

3

)
= O(n3) inequalities.

All covers with |S| ≤ k : up to O(nk) inequalities.
All covers of any size: potentially exponentially many.

As we move from M0 to M1 to M2 to . . . :

z∗
LP(M0)

≥ z∗
LP(M1)

≥ z∗
LP(M2)

≥ . . . ≥ z∗
ILP.

LP bounds get closer to the true integer optimum,
But the LP itself gets larger and more expensive to solve (more rows, denser
constraint matrix).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 6 / 34

How the Number of Inequalities Blows Up
For each cover S we add ∑

i∈S

xi ≤ |S| − 1.

Counting them:
All 2-item covers: up to

(n
2

)
= O(n2) inequalities.

All 3-item covers: up to
(n

3

)
= O(n3) inequalities.

All covers with |S| ≤ k : up to O(nk) inequalities.
All covers of any size: potentially exponentially many.

As we move from M0 to M1 to M2 to . . . :

z∗
LP(M0)

≥ z∗
LP(M1)

≥ z∗
LP(M2)

≥ . . . ≥ z∗
ILP.

LP bounds get closer to the true integer optimum,
But the LP itself gets larger and more expensive to solve (more rows, denser
constraint matrix).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 6 / 34

How the Number of Inequalities Blows Up
For each cover S we add ∑

i∈S

xi ≤ |S| − 1.

Counting them:
All 2-item covers: up to

(n
2

)
= O(n2) inequalities.

All 3-item covers: up to
(n

3

)
= O(n3) inequalities.

All covers with |S| ≤ k : up to O(nk) inequalities.
All covers of any size: potentially exponentially many.

As we move from M0 to M1 to M2 to . . . :

z∗
LP(M0)

≥ z∗
LP(M1)

≥ z∗
LP(M2)

≥ . . . ≥ z∗
ILP.

LP bounds get closer to the true integer optimum,
But the LP itself gets larger and more expensive to solve (more rows, denser
constraint matrix).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 6 / 34

How the Number of Inequalities Blows Up
For each cover S we add ∑

i∈S

xi ≤ |S| − 1.

Counting them:
All 2-item covers: up to

(n
2

)
= O(n2) inequalities.

All 3-item covers: up to
(n

3

)
= O(n3) inequalities.

All covers with |S| ≤ k : up to O(nk) inequalities.
All covers of any size: potentially exponentially many.

As we move from M0 to M1 to M2 to . . . :

z∗
LP(M0)

≥ z∗
LP(M1)

≥ z∗
LP(M2)

≥ . . . ≥ z∗
ILP.

LP bounds get closer to the true integer optimum,
But the LP itself gets larger and more expensive to solve (more rows, denser
constraint matrix).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 6 / 34

How the Number of Inequalities Blows Up
For each cover S we add ∑

i∈S

xi ≤ |S| − 1.

Counting them:
All 2-item covers: up to

(n
2

)
= O(n2) inequalities.

All 3-item covers: up to
(n

3

)
= O(n3) inequalities.

All covers with |S| ≤ k : up to O(nk) inequalities.
All covers of any size: potentially exponentially many.

As we move from M0 to M1 to M2 to . . . :

z∗
LP(M0)

≥ z∗
LP(M1)

≥ z∗
LP(M2)

≥ . . . ≥ z∗
ILP.

LP bounds get closer to the true integer optimum,

But the LP itself gets larger and more expensive to solve (more rows, denser
constraint matrix).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 6 / 34

How the Number of Inequalities Blows Up
For each cover S we add ∑

i∈S

xi ≤ |S| − 1.

Counting them:
All 2-item covers: up to

(n
2

)
= O(n2) inequalities.

All 3-item covers: up to
(n

3

)
= O(n3) inequalities.

All covers with |S| ≤ k : up to O(nk) inequalities.
All covers of any size: potentially exponentially many.

As we move from M0 to M1 to M2 to . . . :

z∗
LP(M0)

≥ z∗
LP(M1)

≥ z∗
LP(M2)

≥ . . . ≥ z∗
ILP.

LP bounds get closer to the true integer optimum,
But the LP itself gets larger and more expensive to solve (more rows, denser
constraint matrix).

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 6 / 34

Effect on B&B: Weak LP (M0)
M0 (weak LP)

root UB = UB(0)
root > z∗

ILP

Node
UB still high

Node
UB still > z∗

ILP

Leaf
int ≤ z∗

ILP

Leaf
int ≤ z∗

ILP

Leaf
int ≤ z∗

ILP
. . .

Behavior:
Root UB far above the best integer value.
LP relaxation gives weak guidance.
Solver must explore many nodes before pruning.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 7 / 34

Effect on B&B: Adding Pair Covers (M1)
M1 (with all pair covers)

root UB = UB(1)
root

closer to z∗
ILP

Node
UB slightly > z∗

ILP

Node
UB ≤ z∗

ILP

Leaf
int ≤ z∗

ILP

Behavior:
Pair-cover inequalities tighten the relaxation.
Root UB moves closer to the true integer optimum.
Some nodes are pruned much earlier than in M0.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 8 / 34

Effect on B&B: Adding Higher-Order Covers (M2)
M2 (pairs + triples
+ . . . up to size k)
root UB ≈ z∗

ILP

Integer optimum
almost no branching needed!

Behavior:
Root LP bound is very close to, or equal to, z∗

ILP.
The B&B tree essentially collapses to the root.
But the LP now has O(nk) extra inequalities. Solving the LP takes as much
as brute forcing!

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 9 / 34

Formulation Strength vs Search Effort
Starting from the basic knapsack LP (M0), bounds are loose, and the solver
has to explore many nodes.
Adding all pair covers (M1) and then all triples, etc. (M2) makes the LP
bounds tighter and the B&B tree smaller.

But:
The number of cover inequalities grows as O(n2), O(n3), . . . , O(nk).
Solving the LP at each node becomes more and more expensive.

Big picture:
Stronger LP ⇒ fewer nodes but bigger LPs.

Good models strike a balance:
LP strong enough to give meaningful bounds,
but not so huge that the LP solve itself dominates the running time.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 10 / 34

Formulation Strength vs Search Effort
Starting from the basic knapsack LP (M0), bounds are loose, and the solver
has to explore many nodes.
Adding all pair covers (M1) and then all triples, etc. (M2) makes the LP
bounds tighter and the B&B tree smaller.

But:
The number of cover inequalities grows as O(n2), O(n3), . . . , O(nk).
Solving the LP at each node becomes more and more expensive.

Big picture:
Stronger LP ⇒ fewer nodes but bigger LPs.

Good models strike a balance:
LP strong enough to give meaningful bounds,
but not so huge that the LP solve itself dominates the running time.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 10 / 34

Formulation Strength vs Search Effort
Starting from the basic knapsack LP (M0), bounds are loose, and the solver
has to explore many nodes.
Adding all pair covers (M1) and then all triples, etc. (M2) makes the LP
bounds tighter and the B&B tree smaller.

But:
The number of cover inequalities grows as O(n2), O(n3), . . . , O(nk).
Solving the LP at each node becomes more and more expensive.

Big picture:
Stronger LP ⇒ fewer nodes but bigger LPs.

Good models strike a balance:
LP strong enough to give meaningful bounds,
but not so huge that the LP solve itself dominates the running time.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 10 / 34

1 Formulation Strength

2 Setup and Motivation

3 Core Binary Modeling Patterns

4 Disjunctions and Big-M

5 SOS1 and SOS2

6 Summary and Outlook

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 11 / 34

Why Modeling Patterns Matter

In practice, the hard part is rarely “solving” the IP.

The hard part is formulating the problem so that:
▶ it captures the real-world constraints, and
▶ it is solver-friendly (strong LP relaxation).

Instead of reinventing the wheel every time, we reuse patterns:
▶ selection / knapsack,
▶ fixed-charge on/off,
▶ logical implications,
▶ cardinality and “at most k ”,
▶ either–or and disjunctions,
▶ SOS1/SOS2 for piecewise-linear functions.

Today’s lecture = “design patterns” for integer programming.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 12 / 34

Why Modeling Patterns Matter

In practice, the hard part is rarely “solving” the IP.
The hard part is formulating the problem so that:

▶ it captures the real-world constraints, and
▶ it is solver-friendly (strong LP relaxation).

Instead of reinventing the wheel every time, we reuse patterns:
▶ selection / knapsack,
▶ fixed-charge on/off,
▶ logical implications,
▶ cardinality and “at most k ”,
▶ either–or and disjunctions,
▶ SOS1/SOS2 for piecewise-linear functions.

Today’s lecture = “design patterns” for integer programming.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 12 / 34

Why Modeling Patterns Matter

In practice, the hard part is rarely “solving” the IP.
The hard part is formulating the problem so that:

▶ it captures the real-world constraints, and
▶ it is solver-friendly (strong LP relaxation).

Instead of reinventing the wheel every time, we reuse patterns:
▶ selection / knapsack,
▶ fixed-charge on/off,
▶ logical implications,
▶ cardinality and “at most k ”,
▶ either–or and disjunctions,
▶ SOS1/SOS2 for piecewise-linear functions.

Today’s lecture = “design patterns” for integer programming.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 12 / 34

Why Modeling Patterns Matter

In practice, the hard part is rarely “solving” the IP.
The hard part is formulating the problem so that:

▶ it captures the real-world constraints, and
▶ it is solver-friendly (strong LP relaxation).

Instead of reinventing the wheel every time, we reuse patterns:
▶ selection / knapsack,
▶ fixed-charge on/off,
▶ logical implications,
▶ cardinality and “at most k ”,
▶ either–or and disjunctions,
▶ SOS1/SOS2 for piecewise-linear functions.

Today’s lecture = “design patterns” for integer programming.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 12 / 34

1 Formulation Strength

2 Setup and Motivation

3 Core Binary Modeling Patterns

4 Disjunctions and Big-M

5 SOS1 and SOS2

6 Summary and Outlook

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 13 / 34

Pattern 1: Subset Selection / 0–1 Knapsack

Basic 0–1 knapsack:

max
n∑

i=1

vixi s.t.
n∑

i=1

wixi ≤ C, xi ∈ {0,1}.

Interpretation:
xi = 1 ⇒ choose item i .
xi = 0 ⇒ do not choose item i .

Pattern name: binary subset selection.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 14 / 34

Pattern 1: Subset Selection / 0–1 Knapsack

Basic 0–1 knapsack:

max
n∑

i=1

vixi s.t.
n∑

i=1

wixi ≤ C, xi ∈ {0,1}.

Interpretation:
xi = 1 ⇒ choose item i .
xi = 0 ⇒ do not choose item i .

Pattern name: binary subset selection.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 14 / 34

Pattern 1: Subset Selection / 0–1 Knapsack

Basic 0–1 knapsack:

max
n∑

i=1

vixi s.t.
n∑

i=1

wixi ≤ C, xi ∈ {0,1}.

Interpretation:
xi = 1 ⇒ choose item i .
xi = 0 ⇒ do not choose item i .

Pattern name: binary subset selection.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 14 / 34

Pattern 2: Fixed-Charge / On–Off Decisions

Many problems have a fixed cost to “turn something on” before you use it:
Opening a facility.
Starting up a machine for the day.
Using a particular shipping route (e.g. Suez Canal registration fees).

Variables:
y ∈ {0,1}: on/off decision.
q ≥ 0: flow / production / quantity.

Model: 0 ≤ q ≤ Qmaxy and y ∈ {0, 1}.
If y = 0 ⇒ q = 0
if y = 1 ⇒ 0 ≤ q ≤ Qmax

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 15 / 34

Pattern 2: Fixed-Charge / On–Off Decisions

Many problems have a fixed cost to “turn something on” before you use it:
Opening a facility.
Starting up a machine for the day.
Using a particular shipping route (e.g. Suez Canal registration fees).

Variables:
y ∈ {0,1}: on/off decision.
q ≥ 0: flow / production / quantity.

Model: 0 ≤ q ≤ Qmaxy and y ∈ {0, 1}.
If y = 0 ⇒ q = 0
if y = 1 ⇒ 0 ≤ q ≤ Qmax

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 15 / 34

Pattern 2: Fixed-Charge / On–Off Decisions

Many problems have a fixed cost to “turn something on” before you use it:
Opening a facility.
Starting up a machine for the day.
Using a particular shipping route (e.g. Suez Canal registration fees).

Variables:
y ∈ {0,1}: on/off decision.
q ≥ 0: flow / production / quantity.

Model: 0 ≤ q ≤ Qmaxy and y ∈ {0, 1}.

If y = 0 ⇒ q = 0
if y = 1 ⇒ 0 ≤ q ≤ Qmax

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 15 / 34

Pattern 2: Fixed-Charge / On–Off Decisions

Many problems have a fixed cost to “turn something on” before you use it:
Opening a facility.
Starting up a machine for the day.
Using a particular shipping route (e.g. Suez Canal registration fees).

Variables:
y ∈ {0,1}: on/off decision.
q ≥ 0: flow / production / quantity.

Model: 0 ≤ q ≤ Qmaxy and y ∈ {0, 1}.
If y = 0 ⇒ q = 0
if y = 1 ⇒ 0 ≤ q ≤ Qmax

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 15 / 34

Fixed-Charge Example: Mini Factory Startup
Simple factory:

Revenue: $6 per unit produced.
Fixed startup cost: $200 if we open.
Capacity: at most 50 units.

max 6q − 200y
s.t. 0 ≤ q ≤ 50y ,

y ∈ {0, 1}.

Observations:
If y = 0: we get q = 0, profit = 0.
If y = 1: we choose q = 50.

Pattern name: fixed-charge on/off.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 16 / 34

Fixed-Charge Example: Mini Factory Startup
Simple factory:

Revenue: $6 per unit produced.
Fixed startup cost: $200 if we open.
Capacity: at most 50 units.

max 6q − 200y
s.t. 0 ≤ q ≤ 50y ,

y ∈ {0, 1}.

Observations:
If y = 0: we get q = 0, profit = 0.
If y = 1: we choose q = 50.

Pattern name: fixed-charge on/off.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 16 / 34

Fixed-Charge Example: Mini Factory Startup
Simple factory:

Revenue: $6 per unit produced.
Fixed startup cost: $200 if we open.
Capacity: at most 50 units.

max 6q − 200y
s.t. 0 ≤ q ≤ 50y ,

y ∈ {0, 1}.

Observations:
If y = 0: we get q = 0, profit = 0.
If y = 1: we choose q = 50.

Pattern name: fixed-charge on/off.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 16 / 34

Fixed-Charge Example: Mini Factory Startup
Simple factory:

Revenue: $6 per unit produced.
Fixed startup cost: $200 if we open.
Capacity: at most 50 units.

max 6q − 200y
s.t. 0 ≤ q ≤ 50y ,

y ∈ {0, 1}.

Observations:
If y = 0: we get q = 0, profit = 0.
If y = 1: we choose q = 50.

Pattern name: fixed-charge on/off.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 16 / 34

Pattern 3: Logical Implications (If A then B)

Suppose we have 2 options:
A,B ∈ {0,1}.

Requirements:
If A is chosen, B must be chosen.

Encoding:
A ≤ B.

If A = 1 then B = 1.
If A = 0 then B ∈ {0, 1}.

Pattern name: binary implication / precedence constraints.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 17 / 34

Pattern 3: Logical Implications (If A then B)

Suppose we have 2 options:
A,B ∈ {0,1}.

Requirements:
If A is chosen, B must be chosen.

Encoding:
A ≤ B.

If A = 1 then B = 1.
If A = 0 then B ∈ {0, 1}.

Pattern name: binary implication / precedence constraints.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 17 / 34

Pattern 3: Logical Implications (If A then B)

Suppose we have 2 options:
A,B ∈ {0,1}.

Requirements:
If A is chosen, B must be chosen.

Encoding:
A ≤ B.

If A = 1 then B = 1.
If A = 0 then B ∈ {0, 1}.

Pattern name: binary implication / precedence constraints.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 17 / 34

Pattern 3: Logical Implications (If A then B)

Suppose we have 2 options:
A,B ∈ {0,1}.

Requirements:
If A is chosen, B must be chosen.

Encoding:
A ≤ B.

If A = 1 then B = 1.
If A = 0 then B ∈ {0, 1}.

Pattern name: binary implication / precedence constraints.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 17 / 34

Pattern 3 in Gurobi: Logical Implication with >>

Goal: If A = 1, then enforce constraint a⊤x ≤ b.
import gurobipy as gp
from gurobipy import GRB

m = gp.Model("implication_demo")

Binary "trigger" variable A
A = m.addVar(vtype=GRB.BINARY, name="A")

Some continuous variables x
x1 = m.addVar(lb=0.0, name="x1")
x2 = m.addVar(lb=0.0, name="x2")

If A == 1, then x1 + 2*x2 <= 5
m.addConstr((A == 1) >> (x1 + 2*x2 <= 5), name="A_implies_constr") #Only new thing here.
m.setObjective(x1 + x2 - 10*A, GRB.MINIMIZE)
m.optimize()

Notes: The constraint only activates when A = 1.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 18 / 34

1 Formulation Strength

2 Setup and Motivation

3 Core Binary Modeling Patterns

4 Disjunctions and Big-M

5 SOS1 and SOS2

6 Summary and Outlook

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 19 / 34

Pattern 4: Either–Or Constraints

Many decisions are mutually exclusive:
Route A or Route B (but not both).
Use technology 1 or technology 2.
Choose one of several pricing schemes.

Basic idea: introduce binaries zA, zB:

zA + zB = 1, zA, zB ∈ {0,1}.

Then “gate” each option:
If Route A: constraints for Route A active when zA = 1.
If Route B: constraints for Route B active when zB = 1.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 20 / 34

Pattern 4: Either–Or Constraints

Many decisions are mutually exclusive:
Route A or Route B (but not both).
Use technology 1 or technology 2.
Choose one of several pricing schemes.

Basic idea: introduce binaries zA, zB:

zA + zB = 1, zA, zB ∈ {0,1}.

Then “gate” each option:
If Route A: constraints for Route A active when zA = 1.
If Route B: constraints for Route B active when zB = 1.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 20 / 34

Pattern 4: Either–Or Constraints

Many decisions are mutually exclusive:
Route A or Route B (but not both).
Use technology 1 or technology 2.
Choose one of several pricing schemes.

Basic idea: introduce binaries zA, zB:

zA + zB = 1, zA, zB ∈ {0,1}.

Then “gate” each option:
If Route A: constraints for Route A active when zA = 1.
If Route B: constraints for Route B active when zB = 1.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 20 / 34

Either–Or Example: Two Shipping Routes
Demand: D units, must ship all of it. Two routes:

Route 1: cost c1 per unit, capacity U1.
Route 2: cost c2 per unit, capacity U2.

Variables:
f1, f2 ≥ 0, z1, z2 ∈ {0,1}.

Constraints:
f1 + f2 = D,

f1 ≤ U1z1, f2 ≤ U2z2,

z1 + z2 = 1.

Objective:
min c1f1 + c2f2.

Pattern name: either–or / disjunctive constraints.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 21 / 34

Either–Or Example: Two Shipping Routes
Demand: D units, must ship all of it. Two routes:

Route 1: cost c1 per unit, capacity U1.
Route 2: cost c2 per unit, capacity U2.

Variables:
f1, f2 ≥ 0, z1, z2 ∈ {0,1}.

Constraints:
f1 + f2 = D,

f1 ≤ U1z1, f2 ≤ U2z2,

z1 + z2 = 1.

Objective:
min c1f1 + c2f2.

Pattern name: either–or / disjunctive constraints.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 21 / 34

Either–Or Example: Two Shipping Routes
Demand: D units, must ship all of it. Two routes:

Route 1: cost c1 per unit, capacity U1.
Route 2: cost c2 per unit, capacity U2.

Variables:
f1, f2 ≥ 0, z1, z2 ∈ {0,1}.

Constraints:
f1 + f2 = D,

f1 ≤ U1z1, f2 ≤ U2z2,

z1 + z2 = 1.

Objective:
min c1f1 + c2f2.

Pattern name: either–or / disjunctive constraints.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 21 / 34

Either–Or Example: Two Shipping Routes
Demand: D units, must ship all of it. Two routes:

Route 1: cost c1 per unit, capacity U1.
Route 2: cost c2 per unit, capacity U2.

Variables:
f1, f2 ≥ 0, z1, z2 ∈ {0,1}.

Constraints:
f1 + f2 = D,

f1 ≤ U1z1, f2 ≤ U2z2,

z1 + z2 = 1.

Objective:
min c1f1 + c2f2.

Pattern name: either–or / disjunctive constraints.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 21 / 34

Pattern 5: Big-M

We often need a binary variable z to indicate if a linear inequality is satisfied.

z = 1 =⇒ a⊤x ≤ b

Using Big-M, we can encode this logic linearly:

a⊤x ≤ b + M(1 − z) z ∈ {0,1}

If z = 1: constraint is enforced ⇒ a⊤x ≤ b.
If z = 0: constraint relaxed ⇒ a⊤x ≤ b + M (always true if M large enough).

Question: How do we choose M?

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 22 / 34

Pattern 5: Big-M

We often need a binary variable z to indicate if a linear inequality is satisfied.

z = 1 =⇒ a⊤x ≤ b

Using Big-M, we can encode this logic linearly:

a⊤x ≤ b + M(1 − z) z ∈ {0,1}

If z = 1: constraint is enforced ⇒ a⊤x ≤ b.
If z = 0: constraint relaxed ⇒ a⊤x ≤ b + M (always true if M large enough).

Question: How do we choose M?

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 22 / 34

Pattern 5: Big-M

We often need a binary variable z to indicate if a linear inequality is satisfied.

z = 1 =⇒ a⊤x ≤ b

Using Big-M, we can encode this logic linearly:

a⊤x ≤ b + M(1 − z) z ∈ {0,1}

If z = 1: constraint is enforced ⇒ a⊤x ≤ b.

If z = 0: constraint relaxed ⇒ a⊤x ≤ b + M (always true if M large enough).
Question: How do we choose M?

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 22 / 34

Pattern 5: Big-M

We often need a binary variable z to indicate if a linear inequality is satisfied.

z = 1 =⇒ a⊤x ≤ b

Using Big-M, we can encode this logic linearly:

a⊤x ≤ b + M(1 − z) z ∈ {0,1}

If z = 1: constraint is enforced ⇒ a⊤x ≤ b.
If z = 0: constraint relaxed ⇒ a⊤x ≤ b + M (always true if M large enough).

Question: How do we choose M?

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 22 / 34

Pattern 5: Big-M

We often need a binary variable z to indicate if a linear inequality is satisfied.

z = 1 =⇒ a⊤x ≤ b

Using Big-M, we can encode this logic linearly:

a⊤x ≤ b + M(1 − z) z ∈ {0,1}

If z = 1: constraint is enforced ⇒ a⊤x ≤ b.
If z = 0: constraint relaxed ⇒ a⊤x ≤ b + M (always true if M large enough).

Question: How do we choose M?

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 22 / 34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 ≤ y ≤ 1) of:

min y s.t. x ≥ 1, x ≤ My , y ∈ {0, 1}.

Case 1: Tight M = 1.
Constraints: x ≥ 1, x ≤ y ⇒ y ≥ 1.
Feasible LP region: only x = 1, y = 1.
LP relaxation = integer solution =⇒ strong LP.

Case 2: Loose M = 1000.
Constraints: x ≥ 1, x ≤ 1000y .
LP can pick y = 0.001, x = 1.
Objective y becomes tiny =⇒ large integrality gap.
Branch-and-bound must search many nodes.

Takeaway:
M must be just large enough to model the logic correctly.
Too-large M weakens the LP relaxation and slows the solver.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 23 / 34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 ≤ y ≤ 1) of:

min y s.t. x ≥ 1, x ≤ My , y ∈ {0, 1}.
Case 1: Tight M = 1.

Constraints: x ≥ 1, x ≤ y ⇒ y ≥ 1.

Feasible LP region: only x = 1, y = 1.
LP relaxation = integer solution =⇒ strong LP.

Case 2: Loose M = 1000.
Constraints: x ≥ 1, x ≤ 1000y .
LP can pick y = 0.001, x = 1.
Objective y becomes tiny =⇒ large integrality gap.
Branch-and-bound must search many nodes.

Takeaway:
M must be just large enough to model the logic correctly.
Too-large M weakens the LP relaxation and slows the solver.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 23 / 34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 ≤ y ≤ 1) of:

min y s.t. x ≥ 1, x ≤ My , y ∈ {0, 1}.
Case 1: Tight M = 1.

Constraints: x ≥ 1, x ≤ y ⇒ y ≥ 1.
Feasible LP region: only x = 1, y = 1.

LP relaxation = integer solution =⇒ strong LP.
Case 2: Loose M = 1000.

Constraints: x ≥ 1, x ≤ 1000y .
LP can pick y = 0.001, x = 1.
Objective y becomes tiny =⇒ large integrality gap.
Branch-and-bound must search many nodes.

Takeaway:
M must be just large enough to model the logic correctly.
Too-large M weakens the LP relaxation and slows the solver.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 23 / 34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 ≤ y ≤ 1) of:

min y s.t. x ≥ 1, x ≤ My , y ∈ {0, 1}.
Case 1: Tight M = 1.

Constraints: x ≥ 1, x ≤ y ⇒ y ≥ 1.
Feasible LP region: only x = 1, y = 1.
LP relaxation = integer solution =⇒ strong LP.

Case 2: Loose M = 1000.
Constraints: x ≥ 1, x ≤ 1000y .
LP can pick y = 0.001, x = 1.
Objective y becomes tiny =⇒ large integrality gap.
Branch-and-bound must search many nodes.

Takeaway:
M must be just large enough to model the logic correctly.
Too-large M weakens the LP relaxation and slows the solver.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 23 / 34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 ≤ y ≤ 1) of:

min y s.t. x ≥ 1, x ≤ My , y ∈ {0, 1}.
Case 1: Tight M = 1.

Constraints: x ≥ 1, x ≤ y ⇒ y ≥ 1.
Feasible LP region: only x = 1, y = 1.
LP relaxation = integer solution =⇒ strong LP.

Case 2: Loose M = 1000.
Constraints: x ≥ 1, x ≤ 1000y .
LP can pick y = 0.001, x = 1.
Objective y becomes tiny =⇒ large integrality gap.
Branch-and-bound must search many nodes.

Takeaway:
M must be just large enough to model the logic correctly.
Too-large M weakens the LP relaxation and slows the solver.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 23 / 34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 ≤ y ≤ 1) of:

min y s.t. x ≥ 1, x ≤ My , y ∈ {0, 1}.
Case 1: Tight M = 1.

Constraints: x ≥ 1, x ≤ y ⇒ y ≥ 1.
Feasible LP region: only x = 1, y = 1.
LP relaxation = integer solution =⇒ strong LP.

Case 2: Loose M = 1000.
Constraints: x ≥ 1, x ≤ 1000y .

LP can pick y = 0.001, x = 1.
Objective y becomes tiny =⇒ large integrality gap.
Branch-and-bound must search many nodes.

Takeaway:
M must be just large enough to model the logic correctly.
Too-large M weakens the LP relaxation and slows the solver.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 23 / 34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 ≤ y ≤ 1) of:

min y s.t. x ≥ 1, x ≤ My , y ∈ {0, 1}.
Case 1: Tight M = 1.

Constraints: x ≥ 1, x ≤ y ⇒ y ≥ 1.
Feasible LP region: only x = 1, y = 1.
LP relaxation = integer solution =⇒ strong LP.

Case 2: Loose M = 1000.
Constraints: x ≥ 1, x ≤ 1000y .
LP can pick y = 0.001, x = 1.

Objective y becomes tiny =⇒ large integrality gap.
Branch-and-bound must search many nodes.

Takeaway:
M must be just large enough to model the logic correctly.
Too-large M weakens the LP relaxation and slows the solver.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 23 / 34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 ≤ y ≤ 1) of:

min y s.t. x ≥ 1, x ≤ My , y ∈ {0, 1}.
Case 1: Tight M = 1.

Constraints: x ≥ 1, x ≤ y ⇒ y ≥ 1.
Feasible LP region: only x = 1, y = 1.
LP relaxation = integer solution =⇒ strong LP.

Case 2: Loose M = 1000.
Constraints: x ≥ 1, x ≤ 1000y .
LP can pick y = 0.001, x = 1.
Objective y becomes tiny =⇒ large integrality gap.

Branch-and-bound must search many nodes.
Takeaway:

M must be just large enough to model the logic correctly.
Too-large M weakens the LP relaxation and slows the solver.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 23 / 34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 ≤ y ≤ 1) of:

min y s.t. x ≥ 1, x ≤ My , y ∈ {0, 1}.
Case 1: Tight M = 1.

Constraints: x ≥ 1, x ≤ y ⇒ y ≥ 1.
Feasible LP region: only x = 1, y = 1.
LP relaxation = integer solution =⇒ strong LP.

Case 2: Loose M = 1000.
Constraints: x ≥ 1, x ≤ 1000y .
LP can pick y = 0.001, x = 1.
Objective y becomes tiny =⇒ large integrality gap.
Branch-and-bound must search many nodes.

Takeaway:
M must be just large enough to model the logic correctly.
Too-large M weakens the LP relaxation and slows the solver.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 23 / 34

Tiny Big-M Demo: Tight vs Loose M
Consider relaxation (i.e. 0 ≤ y ≤ 1) of:

min y s.t. x ≥ 1, x ≤ My , y ∈ {0, 1}.
Case 1: Tight M = 1.

Constraints: x ≥ 1, x ≤ y ⇒ y ≥ 1.
Feasible LP region: only x = 1, y = 1.
LP relaxation = integer solution =⇒ strong LP.

Case 2: Loose M = 1000.
Constraints: x ≥ 1, x ≤ 1000y .
LP can pick y = 0.001, x = 1.
Objective y becomes tiny =⇒ large integrality gap.
Branch-and-bound must search many nodes.

Takeaway:
M must be just large enough to model the logic correctly.
Too-large M weakens the LP relaxation and slows the solver.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 23 / 34

1 Formulation Strength

2 Setup and Motivation

3 Core Binary Modeling Patterns

4 Disjunctions and Big-M

5 SOS1 and SOS2

6 Summary and Outlook

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 24 / 34

Special Ordered Sets: SOS1 and SOS2

Solvers support Special Ordered Sets patterns:
SOS1: At most one variable in the set can be non-zero.
SOS2: At most two adjacent variables (in a specified order) can be non-zero.

Usage:
SOS1: choose exactly one option / segment / pattern.
SOS2: piecewise-linear functions with convex hull interpolation.

Benefit:
1 Solver can internally use clever heuristics designed for either SOS1/SOS2.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 25 / 34

Special Ordered Sets: SOS1 and SOS2

Solvers support Special Ordered Sets patterns:
SOS1: At most one variable in the set can be non-zero.
SOS2: At most two adjacent variables (in a specified order) can be non-zero.

Usage:
SOS1: choose exactly one option / segment / pattern.
SOS2: piecewise-linear functions with convex hull interpolation.

Benefit:
1 Solver can internally use clever heuristics designed for either SOS1/SOS2.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 25 / 34

Special Ordered Sets: SOS1 and SOS2

Solvers support Special Ordered Sets patterns:
SOS1: At most one variable in the set can be non-zero.
SOS2: At most two adjacent variables (in a specified order) can be non-zero.

Usage:
SOS1: choose exactly one option / segment / pattern.
SOS2: piecewise-linear functions with convex hull interpolation.

Benefit:
1 Solver can internally use clever heuristics designed for either SOS1/SOS2.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 25 / 34

Gurobi: Using SOS1 for Choice Modeling
Example: choose exactly one option
import gurobipy as gp
from gurobipy import GRB
m = gp.Model("inventory_complementarity")
demand = 50
Continuous decision variables
produced = m.addVar(lb=0, ub=supply, name="produced")
leftover = m.addVar(lb=0, name="leftover_stock")
backorder = m.addVar(lb=0, name="unmet_demand")
produced - leftover + backorder = demand
m.addConstr(produced - leftover + backorder == demand)
Complementarity: cannot have leftover AND backorder
m.addSOS(GRB.SOS_TYPE1, [leftover, backorder]) #New
Penalties
m.setObjective(1*leftover + 100*backorder, GRB.MINIMIZE)
m.optimize()

Interpretation:
SOS1 enforces mutual exclusivity. Exactly one of leftover or demand is
non-zero.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 26 / 34

Motivating SOS2: What Is a Piecewise-Linear Function?
A piecewise-linear (PWL) function is made of straight segments between known
breakpoints:

(x0, c0), (x1, c1), . . . , (xK , cK).

Example:
k 0 1 2 3
xk 0 50 100 200
ck 0 40 150 320

x

c(x)

0 50 100 200
0

40

150

320

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 27 / 34

Motivating SOS2: What Is a Piecewise-Linear Function?
A piecewise-linear (PWL) function is made of straight segments between known
breakpoints:

(x0, c0), (x1, c1), . . . , (xK , cK).

Example:
k 0 1 2 3
xk 0 50 100 200
ck 0 40 150 320

x

c(x)

0 50 100 200
0

40

150

320

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 27 / 34

Motivating SOS2: What Is a Piecewise-Linear Function?
A piecewise-linear (PWL) function is made of straight segments between known
breakpoints:

(x0, c0), (x1, c1), . . . , (xK , cK).

Example:
k 0 1 2 3
xk 0 50 100 200
ck 0 40 150 320

x

c(x)

0 50 100 200
0

40

150

320

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 27 / 34

Representing a Point on the Curve
We want to represent an arbitrary point (x , c) on this broken line.

Idea: write it as a convex combination of the breakpoints.

(x , c) =
K∑

k=0

λk(xk , ck),
K∑

k=0

λk = 1, λk ≥ 0.

Example: Suppose the true point is halfway between (x1, c1) = (50, 40) and
(x2, c2) = (100, 150).

λ1 = 0.5, λ2 = 0.5, others = 0.

Then

x = 50(0.5) + 100(0.5) = 75, c = 40(0.5) + 150(0.5) = 95.

(x , c) = (75,95) lies exactly on the line segment between breakpoints 1 and 2.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 28 / 34

Representing a Point on the Curve
We want to represent an arbitrary point (x , c) on this broken line.
Idea: write it as a convex combination of the breakpoints.

(x , c) =
K∑

k=0

λk(xk , ck),
K∑

k=0

λk = 1, λk ≥ 0.

Example: Suppose the true point is halfway between (x1, c1) = (50, 40) and
(x2, c2) = (100, 150).

λ1 = 0.5, λ2 = 0.5, others = 0.

Then

x = 50(0.5) + 100(0.5) = 75, c = 40(0.5) + 150(0.5) = 95.

(x , c) = (75,95) lies exactly on the line segment between breakpoints 1 and 2.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 28 / 34

Representing a Point on the Curve
We want to represent an arbitrary point (x , c) on this broken line.
Idea: write it as a convex combination of the breakpoints.

(x , c) =
K∑

k=0

λk(xk , ck),
K∑

k=0

λk = 1, λk ≥ 0.

Example: Suppose the true point is halfway between (x1, c1) = (50, 40) and
(x2, c2) = (100, 150).

λ1 = 0.5, λ2 = 0.5, others = 0.

Then

x = 50(0.5) + 100(0.5) = 75, c = 40(0.5) + 150(0.5) = 95.

(x , c) = (75,95) lies exactly on the line segment between breakpoints 1 and 2.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 28 / 34

Representing a Point on the Curve
We want to represent an arbitrary point (x , c) on this broken line.
Idea: write it as a convex combination of the breakpoints.

(x , c) =
K∑

k=0

λk(xk , ck),
K∑

k=0

λk = 1, λk ≥ 0.

Example: Suppose the true point is halfway between (x1, c1) = (50, 40) and
(x2, c2) = (100, 150).

λ1 = 0.5, λ2 = 0.5, others = 0.

Then

x = 50(0.5) + 100(0.5) = 75, c = 40(0.5) + 150(0.5) = 95.

(x , c) = (75,95) lies exactly on the line segment between breakpoints 1 and 2.
Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 28 / 34

Why We Need an Additional Rule
The convex combination equations alone allow mixtures of non-adjacent
breakpoints:

λ0 = 0.3, λ3 = 0.7 ⇒ x = 140, c = 224.

But that point is not on the curve—it “cuts across” segments.

x

c(x)

Invalid blend:
λ0, λ3 > 0

We must ensure that at most two adjacent λk are positive.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 29 / 34

Why We Need an Additional Rule
The convex combination equations alone allow mixtures of non-adjacent
breakpoints:

λ0 = 0.3, λ3 = 0.7 ⇒ x = 140, c = 224.
But that point is not on the curve—it “cuts across” segments.

x

c(x)

Invalid blend:
λ0, λ3 > 0

We must ensure that at most two adjacent λk are positive.
Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 29 / 34

Special Ordered Sets Type 2 (SOS2)
The adjacency rule is enforced by declaring the (λ0, . . . , λK) as an SOS2 set
ordered by xk .

SOS2 definition:
At most two λk can be nonzero, and adjacent in the order of xk .

x

c(x)

x0 x1 x2 x3

SOS2 enforces: λ1, λ2 > 0 only

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 30 / 34

Special Ordered Sets Type 2 (SOS2)
The adjacency rule is enforced by declaring the (λ0, . . . , λK) as an SOS2 set
ordered by xk .
SOS2 definition:

At most two λk can be nonzero, and adjacent in the order of xk .

x

c(x)

x0 x1 x2 x3

SOS2 enforces: λ1, λ2 > 0 only

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 30 / 34

Special Ordered Sets Type 2 (SOS2)
The adjacency rule is enforced by declaring the (λ0, . . . , λK) as an SOS2 set
ordered by xk .
SOS2 definition:

At most two λk can be nonzero, and adjacent in the order of xk .

x

c(x)

x0 x1 x2 x3

SOS2 enforces: λ1, λ2 > 0 only

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 30 / 34

Gurobi: Declaring an SOS2 Set
Example code for a piecewise-linear cost:
import gurobipy as gp
from gurobipy import GRB

xs = [0, 50, 100, 200]
cs = [0, 40, 150, 320] # cost at breakpoints

m = gp.Model("piecewise_cost")

lam = m.addVars(len(xs), lb=0.0, name="lam")
x = m.addVar(lb=0.0, name="x")
c = m.addVar(lb=0.0, name="cost")

Convex combination for x
m.addConstr(gp.quicksum(lam[k] for k in range(len(xs))) == 1)
m.addConstr(x == gp.quicksum(xs[k] * lam[k] for k in range(len(xs))))

SOS2 declaration: at most two adjacent lambdas > 0
m.addSOS(GRB.SOS_TYPE2, [lam[k] for k in range(len(xs))], xs) #New!!

Final convex combination for cost
m.addConstr(c == gp.quicksum(cs[k] * lam[k] for k in range(len(xs))))

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 31 / 34

Homework: Building SOS1 and SOS2 from Scratch
In this week’s HW, you’ll implement the same ideas manually using big-M and
binary variables. For SOS2:

Step 1: Start from the breakpoints

(xk , ck) = (0, 0), (50,40), (100, 150), (200, 320)

and define binary variables zk ∈ {0,1} that pick which segment is active.
Step 2: Use Big-M or indicator constraints to:

enforce that exactly one segment is active,
interpolate x and c correctly within that segment.

Goal: understand how SOS1/SOS2 encapsulates the same logic you’d otherwise
build with Big-M + binaries.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 32 / 34

Homework: Building SOS1 and SOS2 from Scratch
In this week’s HW, you’ll implement the same ideas manually using big-M and
binary variables. For SOS2:
Step 1: Start from the breakpoints

(xk , ck) = (0, 0), (50,40), (100, 150), (200, 320)

and define binary variables zk ∈ {0,1} that pick which segment is active.

Step 2: Use Big-M or indicator constraints to:
enforce that exactly one segment is active,
interpolate x and c correctly within that segment.

Goal: understand how SOS1/SOS2 encapsulates the same logic you’d otherwise
build with Big-M + binaries.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 32 / 34

Homework: Building SOS1 and SOS2 from Scratch
In this week’s HW, you’ll implement the same ideas manually using big-M and
binary variables. For SOS2:
Step 1: Start from the breakpoints

(xk , ck) = (0, 0), (50,40), (100, 150), (200, 320)

and define binary variables zk ∈ {0,1} that pick which segment is active.
Step 2: Use Big-M or indicator constraints to:

enforce that exactly one segment is active,
interpolate x and c correctly within that segment.

Goal: understand how SOS1/SOS2 encapsulates the same logic you’d otherwise
build with Big-M + binaries.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 32 / 34

1 Formulation Strength

2 Setup and Motivation

3 Core Binary Modeling Patterns

4 Disjunctions and Big-M

5 SOS1 and SOS2

6 Summary and Outlook

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 33 / 34

Summary of Lecture 6

We saw core binary modeling patterns:
▶ selection / knapsack,
▶ fixed-charge on/off and linking constraints,
▶ logical implications and precedence,
▶ either–or disjunctions via binaries.

We discussed Big-M:
▶ too-large M ⇒ weak LP, big B&B tree,
▶ use data/context to tighten M and strengthen the formulation.

We introduced SOS1/SOS2:
▶ solver-native constructs for at-most-one and piecewise-linear modeling,
▶ avoid manual Big-M and get stronger relaxations.

Elfarouk Harb (UIUC) CS498: Algorithmic Engineering Week 03 – 02/05/2026 34 / 34

	Formulation Strength
	Setup and Motivation
	Core Binary Modeling Patterns
	Disjunctions and Big-M
	SOS1 and SOS2
	Summary and Outlook

